Skip to main content

Frontiers in Imaging-Acquisition Technologies: Ultrasound

  • Chapter
  • First Online:
Anatomy for Urologic Surgeons in the Digital Era
  • 795 Accesses

Abstract

Ultrasound (US) is the most commonly used imaging tool in clinical practice. The innovation including contrast enhanced ultrasound (CEUS) and elastography has transformed US into a multiparametric imaging tool which allows the evaluation of different characteristics of the pathological conditions in the same session. Urology is among the cardinal fields of medicine where US has been used for both diagnostic and therapeutic purposes. 3D imaging, as a valuable complement to 2D US is a widely available feature in many of the currently available US machines. The development of novel technologies such as US-enhanced CL, endoluminal US, micro-ultrasound, PAI and SR-UMI might potentially revolutionize modern medical diagnostics by enlarging the field of its clinical applications including urology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tawfeek AM, Mostafa D, Radwan A, Hamza IH. The role of 3-dimensional sonography and virtual sonographic cystoscopy in the detection of bladder tumors. Afr J Urol. 2018;24:73–8.

    Article  Google Scholar 

  2. Downey DB, Fenster A, Williams JC. Clinical utility of three-dimensional US. Radiographics. 2000;20:559–71.

    Article  CAS  PubMed  Google Scholar 

  3. Shen F, Shinohara K, Kumar D, et al. Three-dimensional sonography with needle tracking: role in diagnosis and treatment of prostate cancer. J Ultrasound Med. 2008;27:895–905.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Riccabona M, Fritz G, Ring E. Potential applications of three-dimensional ultrasound in the pediatric urinary tract: pictorial demonstration based on preliminary results. Eur Radiol. 2003;13:2680–7.

    Article  CAS  PubMed  Google Scholar 

  5. Digesu GA, Robinson D, Cardozo L, Khullar V. Three-dimensional ultrasound of the urethral sphincter predicts continence surgery outcome. Neurourol Urodyn. 2009;28:90–4.

    Article  PubMed  Google Scholar 

  6. Moon MH, Kim SH, Lee YH, et al. Diagnostic potential of three-dimensional ultrasound-based virtual cystoscopy: an experimental study using pig bladders. Investig Radiol. 2006;41:883–9.

    Article  Google Scholar 

  7. Song JH, Francis IR, Platt JF, et al. Bladder tumor detection at virtual cystoscopy. Radiology. 2020;218:95–100.

    Article  Google Scholar 

  8. Tyloch JF, Tyloch DJ, Adamowicz J, et al. Application of three-dimensional ultrasonography (3D ultrasound) to pretreatment evaluation of plastic induration of the penis (Peyronie’s disease). Med Ultrason. 2020. https://doi.org/10.11152/mu-2132

  9. Sidhu PS, Cantisani V, Dietrich CF, et al. The EFSUMB guidelines and recommendations for the clinical practice of contrast-enhanced ultrasound (CEUS) in non-hepatic applications: update 2017 (Long Version). Ultraschall Med. 2018;39:e2–e44.

    Article  PubMed  Google Scholar 

  10. Piscaglia F, Nolsoe C, Dietrich CF, et al. The EFSUMB guidelines and recommendations on the clinical practice of contrast enhanced ultrasound (CEUS): update 2011 on non-hepatic applications. Ultraschall Med. 2012;32:33–59.

    Google Scholar 

  11. Claudon M, Dietrich CF, Choi BI, et al. Guidelines and good clinical practice recommendations for contrast enhanced ultrasound (CEUS) in the liver – update 2012. Ultraschall Med. 2013;34:11–29.

    Article  CAS  PubMed  Google Scholar 

  12. Tang C, Fang K, Guo Y, et al. Safety of sulfur hexafluoride microbubbles in sonography of abdominal and superficial organs: retrospective analysis of 30222 cases. J Ultrasound Med. 2017;36:531–8.

    Article  PubMed  Google Scholar 

  13. Correas JM, Claudon M, Tranquart F, et al. The kidney: imaging with microbubble contrast agents. Ultrasound Q. 2006;22:53–66.

    PubMed  Google Scholar 

  14. Tsuruoka K, Yasuda T, Koitabashi K, et al. Evaluation of renal microcirculation by contrast-enhanced ultrasound with SonazoidTM as a contrast agent comparison between normal subjects and patients with chronic kidney disease. Int Heart J. 2010;51:176–82.

    Article  PubMed  Google Scholar 

  15. Bertolotto M, Martegani A, Aiani L, et al. Value of contrast-enhanced ultrasonography for detecting renal infarcts proven by contrast enhanced CT. A feasibility study. Eur Radiol. 2008;18:376–83.

    Article  PubMed  Google Scholar 

  16. Barr RG, Peterson C, Hindi A. Evaluation of indeterminate renal masses with contrast-enhanced US: a diagnostic performance study. Radiology. 2014;271:133–42.

    Article  PubMed  Google Scholar 

  17. Quaia E, Bertolotto M, Cioffi V, et al. Comparison of contrast-enhanced sonography with unenhanced sonography and contrast-enhanced CT in the diagnosis of malignancy in complex renal masses. Am J Roentgenol. 2008;191:1239–49.

    Article  Google Scholar 

  18. Clevert DA, Minaifar N, Weckbach S, et al. Multislice computed tomography versus contrast-enhanced ultrasound in evaluation of complex cystic renal masses using the Bosniak classification system. Clin Hemorheol Microcirc. 2008;39:171–8.

    Article  PubMed  Google Scholar 

  19. Bertolotto M, Cicero C, Perrone R, et al. Renal masses with equivocal enhancement at CT: characterization with contrast-enhanced ultrasound. Am J Roentgenol. 2015;205:W557–65.

    Article  Google Scholar 

  20. Xu ZF, Xu HX, Xie XY, Liu GJ, Zheng YL, Lu MD. Renal cell carcinoma and renal angiomyolipoma: differential diagnosis with real-time contrast-enhanced ultrasonography. J Ultrasound Med. 2010;29:709–17.

    Article  PubMed  Google Scholar 

  21. Xue LY, Lu Q, Huang BJ, Li CX, Yan LX, Wang WP. Differentiation of subtypes of renal cell carcinoma with contrast-enhanced ultrasonography. Clin Hemorheol Microcirc. 2016;63:361–71.

    Google Scholar 

  22. Cao H, Fang L, Chen L, et al. The independent indicators for differentiating renal cell carcinoma from renal angiomyolipoma by contrast-enhanced ultrasound. BMC Med Imaging. 2020;20:32.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Fontanilla T, Minaya J, Cortes C, et al. Acute complicated pyelonephritis: contrast-enhanced ultrasound. Abdom Imaging. 2012;37:639–46.

    Article  PubMed  Google Scholar 

  24. Drudi FM, Cantisani V, Liberatore M, et al. Role of low-mechanical index CEUS in the differentiation between low and high grade bladder carcinoma: a pilot study. Ultraschall Med. 2010;31:589–95.

    Article  CAS  PubMed  Google Scholar 

  25. Wang XH, Wang YJ, Lei CG. Evaluating the perfusion of occupying lesions of kidney and bladder with contrast-enhanced ultrasound. Clin Imaging. 2011;35:447–51.

    Article  PubMed  Google Scholar 

  26. Caruso G, Salvaggio G, Campisi A, et al. Bladder tumor staging: comparison of contrast-enhanced and gray-scale ultrasound. Am J Roentgenol. 2010;194:151–6.

    Article  Google Scholar 

  27. Drudi FM, Di Leo N, Maghella F, et al. CEUS in the study of bladder, method, administration and evaluation, a technical note. J Ultrasound. 2014;17:57–63.

    Article  CAS  PubMed  Google Scholar 

  28. Postema A, Idzenga T, Mischi M, Frinking P, de la Rosette J, Wijkstra H. Ultrasound modalities and quantification: developments of multiparametric ultrasonography, a new modality to detect, localize and target prostatic tumors. Curr Opin Urol. 2015;25:191–7.

    Article  PubMed  Google Scholar 

  29. Mischi M, Kuenen MP, Wijkstra H. Angiogenesis imaging by spatiotemporal analysis of ultrasound contrast agent dispersion kinetics. IEEE Trans Ultrason Ferroelectr Freq Control. 2012;59:621–9.

    Article  PubMed  Google Scholar 

  30. Postema AW, Gayet MCW, van Sloun RJG et al. Contrast-enhanced ultrasound with dispersion analysis for the localization of prostate cancer: correlation with radical prostatectomy specimens. World J Urol. 2020. https://doi.org/10.1007/s00345-020-03103-4

  31. Schalk SG, Demi L, Smeenge M, et al. 4-D spatiotemporal analysis of ultrasound contrast agent dispersion for prostate cancer localization: a feasibility study. IEEE Trans Ultrason Ferroelectri Freq Control. 2015;62:839–51.

    Article  Google Scholar 

  32. Grey A, Ahmed HU. Multiparametric ultrasound in the diagnosis of prostate cancer. Curr Opin Urol. 2016;26:114–9.

    Article  PubMed  Google Scholar 

  33. Postema A, Mischi M, de la Rosette J, et al. Multiparametric ultrasound in the detection of prostate cancer: a systematic review. World J Urol. 2015;33:1651–9.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Smeenge M, Barentsz J, Cosgrove D, et al. Role of transrectal ultrasonography (TRUS) in focal therapy of prostate cancer: report from a consensus panel. BJU Int. 2012;110:942–8.

    Article  PubMed  Google Scholar 

  35. Moschouris H, Stamatiou K, Kalokairinou Motogna M, et al. Early post-interventional sonographic evaluation of prostatic artery embolization. A promising role for contrast-enhanced ultrasonography (CEUS). Med Ultrason. 2018;20:134–40.

    Article  PubMed  Google Scholar 

  36. Ishii T, Nahas H, Yiu BYS, Chee AJY, Yu ACH. Contrast-enhanced urodynamic vector projectile imaging (CE-UroVPI) for urethral voiding visualization: principles and phantom studies. Urology. 2020. https://doi.org/10.1016/j.urology.2020.03.005

  37. Bertolotto M, Derchi LE, Sidhu PS, et al. Acute segmental testicular infarction at contrast-enhanced ultrasound: early features and changes during follow-up. Am J Roentgenol. 2011;196:834–41.

    Article  Google Scholar 

  38. Lung PF, Jaffer OS, Sellars ME, et al. Contrast enhanced ultrasound (CEUS) in the evaluation of focal testicular complications secondary to epidiymitis. Am J Roentgenol. 2012;199:W345–54.

    Article  Google Scholar 

  39. Patel K, Huang DY, Sidhu PS. Metachronous bilateral segmental testicular infarction: multi-parametric ultrasound imaging with grey-scale ultrasound, Doppler ultrasound, contrast enhanced ultrasound (CEUS) and real-time tissue elastography (RTE). J Ultrasound. 2014;17:233–8.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Valentino M, Bertolotto M, Derchi L, et al. Role of contrast enhanced ultrasound in acute scrotal diseases. Eur Radiol. 2011;21:1831–40.

    Article  PubMed  Google Scholar 

  41. Lobianco R, Regine R, De Siero M, et al. Contrast-enhanced sonography in blunt scrotal trauma. J Ultrasound. 2011;14:188–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yusuf T, Sellars ME, Kooiman GG, et al. Global testicular infarction in the presence of epididymitis. Clinical features, appearances on grayscale, color Doppler, and contrat-enhanced sonography, and histologic correlation. J Ultrasound Med. 2013;32:175–80.

    Article  PubMed  Google Scholar 

  43. Rafailidis V, Robbie H, Konstantatou E, et al. Sonographic imaging of extra-testicular focal lesions: comparison of grey-scale, colour Doppler and contrast-enhanced ultrasound. Ultrasound. 2016;24:23–33.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Rocher L, Ramchandani P, Belfield J. Incidentally detected non-palpable testicular tumours in adults at scrotal ultrasound: impact of radiological findings on management radiologic review and recommendations of the ESUR scrotal imaging subcommittee. Eur Radiol. 2016;26:2268–78.

    Article  PubMed  Google Scholar 

  45. Shiina T, Nightingale KR, Palmeri ML, et al. WFUMB guidelines and recommendations for clinical use of ultrasound elastography: Part 1: basic principles and terminology. Ultrasound Med Biol. 2015;41:1126–47.

    Article  PubMed  Google Scholar 

  46. Săftoiu A, Gilja OH, Sidhu PS, et al. The EFSUMB guidelines and recommendations for the clinical practice of elastography in non-hepatic applications: update 2018. Ultraschall Med. 2019;40:425–53.

    Article  PubMed  Google Scholar 

  47. Yang Y, Zhao X, Zhao X, Shi J, Huang Y. Value of shear wave elastography for diagnosis of primary prostate cancer: a systematic review and meta-analysis. Med Ultrason. 2019;21:382–8.

    Article  PubMed  Google Scholar 

  48. Yavuz A, Yokus A, Taken K, Batur A, Ozgokce M, Arslan H. Reliability of testicular stiffness quantification using shear wave elastography in predicting male fertility: a preliminary prospective study. Med Ultrason. 2018;20:141–7.

    Article  PubMed  Google Scholar 

  49. Dietrich CF, Bamber J, Berzigotti A, et al. EFSUMB guidelines and recommendations on the clinical use of liver ultrasound elastography, Update 2017 (Long Version). Ultraschall Med. 2017;38:E16–47.

    PubMed  Google Scholar 

  50. Dietrich CF, Bamber J, Berzigotti A, et al. EFSUMB guidelines and recommendations on the clinical use of liver ultrasound elastography, update 2017 (Short Version). Ultraschall Med. 2017;38:377–94.

    Article  PubMed  Google Scholar 

  51. Franchi-Abella S, Elie C, Correas JM. Ultrasound elastography: advantages, limitations and artefacts of the different techniques from a study on a phantom. Diagn Interv Imaging. 2013;94:497–501.

    Article  CAS  PubMed  Google Scholar 

  52. Correas JM, Anglicheau D, Joly D, et al. Ultrasound-based imaging methods of the kidney-recent developments. Kidney Int. 2016;90:1199–210.

    Article  PubMed  Google Scholar 

  53. Derieppe M, Delmas Y, Gennisson JL, et al. Detection of intrarenal microstructural changes with supersonic shear wave elastography in rats. Eur Radiol. 2012;22:243–50.

    Article  PubMed  Google Scholar 

  54. Guo LH, Xu HX, Fu HJ, et al. Acoustic radiation force impulse imaging for noninvasive evaluation of renal parenchyma elasticity: preliminary findings. PLoS One. 2013;8:e68925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sasaki Y, Hirooka Y, Kawashima H, et al. Measurements of renal shear wave velocities in chronic kidney disease patients. Acta Radiol. 2018;59:884–90.

    Article  PubMed  Google Scholar 

  56. Asano K, Ogata A, Tanaka K, et al. Acoustic radiation force impulse elastography of the kidneys: is shear wave velocity affected by tissue fibrosis or renal blood flow? J Ultrasound Med. 2014;33:793–801.

    Article  PubMed  Google Scholar 

  57. Marticorena GSR, Guo J, Dürr M, et al. Comparison of ultrasound shear wave elastography with magnetic resonance elastography and renal microvascular flow in the assessment of chronic renal allograft dysfunction. Acta Radiol. 2018;59:1139–45.

    Article  Google Scholar 

  58. Aydin S, Yildiz S, Turkmen I, et al. Value of shear wave elastography for differentiating benign and malignant renal lesions. Med Ultrason. 2018;1:21–6.

    Article  PubMed  Google Scholar 

  59. Clevert DA, Stock K, Klein B, et al. Evaluation of acoustic radiation force impulse (ARFI) imaging and contrast-enhanced ultrasound in renal tumours of unknown etiology in comparison to histological findings. Clin Hemorheol Microcirc. 2009;43:95–107.

    Article  PubMed  Google Scholar 

  60. Volikova AI, Marshall BJ, Yin JMA, Goodwin R, Chow PE, Wise MJ. Structural, biomechanical and hemodynamic assessment of the bladder wall in healthy subjects. Res Rep Urol. 2019;11:233–45.

    Google Scholar 

  61. Onur R, Littrup PJ, Pontes JE, et al. Contemporary impact of transrectal ultrasound lesions for prostate cancer detection. J Urol. 2004;172:512–4.

    Article  PubMed  Google Scholar 

  62. Salomon G, Köllerman J, Thederan I, et al. Evaluation of prostate cancer detection with ultrasound real-time elastography: a comparison with step section pathological analysis after radical prostatectomy. Eur Urol. 2008;54:1354–62.

    Article  PubMed  Google Scholar 

  63. Emara DM, Naguib NN, Yehia M, El Shafei MM. Ultrasound elastography in characterization of prostatic lesions: correlation with histopathological findings. Br J Radiol. 2020. https://doi.org/10.1259/bjr.20200035

  64. Wei C, Zhang Y, Malik H, et al. Prediction of postprostatectomy biochemical recurrence using quantitative ultrasound shear wave elastography imaging. Front Oncol. 2019;9:572.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Zhang X, Zhou B, Kopecky SL, Trost LW. Two dimensional penile ultrasound vibro-elastography for measuring penile tissue viscoelasticity: a pilot patient study and its correlation with penile ultrasonography. J Mech Behav Biomed Mater. 2020;103:103570.

    Article  PubMed  Google Scholar 

  66. Wildeboer RR, Mannaerts CK, van Sloun RJG, et al. Automated multiparametric localization of prostate cancer based on B-mode, shear-wave elastography, and contrast-enhanced ultrasound radiomics. Eur Radiol. 2020;30:806–15.

    Article  PubMed  Google Scholar 

  67. Sidhu PS. Multiparametric ultrasound (MPUS) imaging: terminology describing the many aspects of ultrasonography. Ultraschall Med. 2015;36:315–7.

    Article  CAS  PubMed  Google Scholar 

  68. Aigner F, De Zordo T, Pallwein-Prettner L, et al. Real-time sonoelastography for the evaluation of testicular lesions. Radiology. 2012;263:584–9.

    Article  PubMed  Google Scholar 

  69. Marsaud A, Durand M, Raffaelli C, et al. Elastography shows promise in testicular cancer detection. Prog Urol. 2015;25:75–82.

    Article  CAS  PubMed  Google Scholar 

  70. Sun Z, Xie M, Xiang F, et al. Utility of real-time shear wave elastography in the assessment of testicular torsion. PLoS One. 2015;10:e0138523.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Zhang X, Lv F, Tang J. Shear wave elastography (SWE) is reliable method for testicular spermatogenesis evaluation after torsion. Int J Clin Exp Med. 2015;8:7089–97.

    PubMed  PubMed Central  Google Scholar 

  72. Xue E, Yu Y, Lin L, Li Z, Su H. Application value of real-time shear wave elastography in differential diagnosis of testicular torsion. Med Ultrason. 2020;22:43–8.

    Article  PubMed  Google Scholar 

  73. Dikici AS, Er ME, Alis D, et al. Is there any difference between seminomas and nonseminomatous germ cell tumours on shear wave elastography? A preliminary study. J Ultrasound Med. 2016;35:2575–80.

    Article  PubMed  Google Scholar 

  74. Pedersen MR, Møller H, Osther PJS, et al. Comparison of tissue stiffness using shear wave elastography in men with normal testicular tissue, testicular microlithiasis and testicular cancer. Ultrasound Int Open. 2017;3:E150–5.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Rocher L, Criton A, Gennisson JL, et al. Testicular shear wave elastography in normal and infertile men: a prospective study on 601 patients. Ultrasound Med Biol. 2017;43:782–9.

    Article  PubMed  Google Scholar 

  76. Ucar AK, Alis D, Samanci C, et al. A preliminary study of shear wave elastography for the evaluation of unilateral palpable undescended testes. Eur J Radiol. 2017;86:248–51.

    Article  PubMed  Google Scholar 

  77. De Zordo T, Stronegger D, Pallwein-Prettner L, et al. Multiparametric ultrasonography of the testicles. Nat Rev Urol. 2013;10:135–48.

    Article  PubMed  Google Scholar 

  78. D’Anastasi M, Schneevoigt BS, Trottmann M, et al. Acoustic radiation force impulse imaging of the testes: a preliminary experience. Clin Hemorheol Microcirc. 2011;49:105–14.

    Article  PubMed  Google Scholar 

  79. Trottmann M, Marcon J, D’Anastasi M, et al. Shear-wave elastography of the testis in the healthy man – determination of standard values. Clin Hemorheol Microcirc. 2016;62:273–81.

    Article  CAS  PubMed  Google Scholar 

  80. Le D, Dhamecha D, Gonsalves A, Menon JU. Ultrasound-enhanced chemiluminescence for bioimaging. Front Bioeng Biotechnol. 2020;8:25.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Bus MTJ, Cernohorsky P, de Bruin DM, et al. Ex-vivo study in nephroureterectomy specimens defining the role of 3-D upper urinary tract visualization using optical coherence tomography and endoluminal ultrasound. J Med Imaging (Bellingham). 2018;5:017001.

    Google Scholar 

  82. Mintz GS, Nissen SE, Anderson WD, et al. American College of Cardiology Clinical Expert Consensus Document on standards for acquisition, measurement and reporting of intravascular ultrasound studies (IVUS). A report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents. J Am Coll Cardiol. 2001;37:1478–92.

    Article  CAS  PubMed  Google Scholar 

  83. Zhang M, Wang R, Wu Y, et al. Micro-ultrasound imaging for accuracy of diagnosis in clinically significant prostate cancer: a meta-analysis. Front Oncol. 2019;9:1368.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Rohrbach D, Wodlinger B, Wen J, Mamou J, Feleppa E. High-frequency quantitative ultrasound for imaging prostate cancer using a novel micro-ultrasound scanner. Ultrasound Med Biol. 2018;44:1341–54.

    Article  PubMed  Google Scholar 

  85. Valluru KS, Chinni BK, Rao NA, Shweta B, Dogra VS. Basics and clinical applications of photoacoustic imaging. Ultrasound Clin. 2009;4:403–29.

    Article  Google Scholar 

  86. Valluru KS, Chinni BK, Rao NA. Photoacoustic imaging: opening new frontiers in medical imaging. J Clin Imaging Sci. 2011;1:24.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Jnawali K, Chinni B, Dogra V, Rao N. Photoacoustic simulation study of chirp excitation response from different size absorbers. In: Medical imaging 2017: ultrasonic imaging and tomography, vol 10139. International Society for Optics and Photonics, 2017. p. 101391L.

    Google Scholar 

  88. Jnawali K, Chinni B, Dogra V, Rao N. Automatic cancer tissue detection using multispectral photoacoustic imaging. Int J Comput Assist Radiol Surg. 2020;15:309–20.

    Article  PubMed  Google Scholar 

  89. Dogra VS, Chinni BK, Valluru KS, et al. Multispectral photoacoustic imaging of prostate cancer: preliminary ex-vivo results. J Clin Imaging Sci. 2013;3:41.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Sinha S, Dogra VS, Chinni BK, Rao NA. Frequency domain analysis of multiwavelength photoacoustic signals for differentiating among malignant, benign, and normal thyroids in an ex vivo study with human thyroids. J Ultrasound Med. 2017;36:2047–59.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Lashkari B, Mandelis A. Linear frequency modulation photoacoustic radar: optimal bandwidth and signal-to-noise ratio for frequency-domain imaging of turbid media. J Acoust Soc Am. 2011;130:1313–24.

    Article  PubMed  Google Scholar 

  92. Agarwal A, Huang SW, O’donnell M, et al. Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging. J Appl Phys. 2007;102:064701.

    Article  CAS  Google Scholar 

  93. Bungart BL, Lan L, Wang P, et al. Photoacoustic tomography of intact human prostates and vascular texture analysis identify prostate cancer biopsy targets. Photo-Dermatology. 2018;11:46–55.

    Google Scholar 

  94. Wang LV, Yao J. A practical guide to photoacoustic tomography in the life sciences. Nat Methods. 2016;13:627–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hui J, Li R, Phillips EH, Goergen CJ, Sturek M, Cheng JX. Bond-selective photoacoustic imaging by converting molecular vibration into acoustic waves. Photo-Dermatology. 2016;4:11–21.

    Google Scholar 

  96. Tang S, Song P, Trzasko JD, et al. Kalman filter-based microbubble tracking for robust super-resolution ultrasound microvessel imaging. IEEE Trans Ultrason Ferroelectr Freq Control. 2020. https://doi.org/10.1109/TUFFC.2020.2984384

  97. Huang C, Lowerison MR, Trzasko JD, et al. Short acquisition time super-resolution ultrasound microvessel imaging via microbubble separation. Sci Rep. 2020;10:6007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Turgut, A.T., Dogra, V. (2021). Frontiers in Imaging-Acquisition Technologies: Ultrasound. In: Huri, E., Veneziano, D. (eds) Anatomy for Urologic Surgeons in the Digital Era. Springer, Cham. https://doi.org/10.1007/978-3-030-59479-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59479-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59478-7

  • Online ISBN: 978-3-030-59479-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics