Skip to main content
  • 780 Accesses

Abstract

Physical models are important components of several procedure specific skills acquisition simulations. With a huge impact of three dimensional (3D) printing technology, bench top or synthetic models are converted into the 3D printed ones. Additional advantages like being patient-specific and usage of real instruments, supports portable and reusable physical models especially with the high fidelity for procedural simulations and difficult cases in Urological surgical training. Newer simulation modalities such as augmented reality (AR) and 3D bio-printing of physical models are also rapidly gaining popularity. In near future hybrid educational curriculum will help to enhance operating-room experience and reduce many of its associated challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aydin A, Raison N, Khan MS, Dasgupta P, Ahmed K. Simulation-based training and assessment in urological surgery. Nat Rev Urol. 2016 Sep;13(9):503–19. https://doi.org/10.1038/nrurol.2016.147.

    Article  PubMed  Google Scholar 

  2. Colaco M, Igel DA, Atala A. The potential of 3D printing in urological research and patient care. Nat Rev Urol. 2018 Apr;15(4):213–21. https://doi.org/10.1038/nrurol.2018.6.

    Article  PubMed  Google Scholar 

  3. Silberstein JL, Maddox MM, Dorsey P, Feibus A, Thomas R, Lee BR. Physical models of renal malignancies using standard cross-sectional imaging and 3-dimensional printers: a pilot study. Urology. 2014 Aug;84(2):268–72. https://doi.org/10.1016/j.urology.2014.03.042.

    Article  PubMed  Google Scholar 

  4. Knoedler M, Feibus AH, Lange A, Maddox MM, Ledet E, Thomas R, Silberstein JL. Individualized physical 3-dimensional kidney tumor models constructed from 3-dimensional printers result in improved trainee anatomic understanding. Urology. 2015 Jun;85(6):1257–61. https://doi.org/10.1016/j.urology.2015.02.053.

    Article  PubMed  Google Scholar 

  5. Maddox MM, Feibus A, Liu J, Wang J, Thomas R, Silberstein JL. 3D-printed soft-tissue physical models of renal malignancies for individualized surgical simulation: a feasibility study. J Robot Surg. 2018 Mar;12(1):27–33. https://doi.org/10.1007/s11701-017-0680-6.

    Article  PubMed  Google Scholar 

  6. Libby RS, Silberstein JL. Physical model of clear-cell renal carcinoma with inferior vena cava extension created from a 3-dimensional printer to aid in surgical resection: a case report. Clin Genitourin Cancer. 2017 Oct;15(5):e867–9. https://doi.org/10.1016/j.clgc.2017.04.025.

    Article  PubMed  Google Scholar 

  7. Lee H, Nguyen NH, Hwang SI, Lee HJ, Hong SK, Byun SS. Personalized 3D kidney model produced by rapid prototyping method and its usefulness in clinical applications. Int Braz J Urol. 2018 Sep-Oct;44(5):952–7. https://doi.org/10.1590/S1677-5538.IBJU.2018.0162.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Fan G, Li J, Li M, Ye M, Pei X, Li F, Zhu S, Weiqin H, Zhou X, Xie Y. Three-dimensional physical model-assisted planning and navigation for laparoscopic partial nephrectomy in patients with endophytic renal tumors. Sci Rep. 2018 Jan 12;8(1):582. https://doi.org/10.1038/s41598-017-19056-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Adams F, Qiu T, Mark A, Fritz B, Kramer L, Schlager D, Wetterauer U, Miernik A, Fischer P. Soft 3D-printed phantom of the human kidney with collecting system. Ann Biomed Eng. 2017 Apr;45(4):963–72. https://doi.org/10.1007/s10439-016-1757-5.

    Article  PubMed  Google Scholar 

  10. Atalay HA, Ülker V, Alkan İ, Canat HL, Özkuvancı Ü, Altunrende F. Impact of three-dimensional printed Pelvicaliceal system models on Residents' understanding of Pelvicaliceal system anatomy before percutaneous Nephrolithotripsy surgery: a pilot study. J Endourol. 2016 Oct;30(10):1132–7.

    Article  Google Scholar 

  11. Atalay HA, Canat HL, Ülker V, Alkan İ, Özkuvanci Ü, Altunrende F. Impact of personalized three-dimensional -3D- printed pelvicalyceal system models on patient information in percutaneous nephrolithotripsy surgery: a pilot study. Int Braz J Urol. 2017 May-Jun;43(3):470–5. https://doi.org/10.1590/S1677-5538.IBJU.2016.0441.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Akand M, Civcik L, Buyukaslan A, Altintas E, Kocer E, Koplay M, Erdogru T. Feasibility of a novel technique using 3-dimensional modeling and augmented reality for access during percutaneous nephrolithotomy in two different ex-vivo models. Int Urol Nephrol. 2019 Jan;51(1):17–25. https://doi.org/10.1007/s11255-018-2037-0.

    Article  PubMed  Google Scholar 

  13. Tatar İ, Huri E, Selçuk İ, Moon YL, Paoluzzi A, Skolarikos A. Review of the effect of 3D medical printing and virtual reality on urology training with ‘MedTRain3DModsim’ Erasmus + European Union project. Turk J Med Sci. 2019 Oct 24;49(5):1257–70. https://doi.org/10.3906/sag-1905-73.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Tatar İ, Huri E, Selçuk İ. Evaluation of a 3D printed female anatomical model for the hands on training of trans-obturator tape (TOT) and tension free vaginal tape (TVT) sling procedures. Int J Morphol. 2020;38(2):292–8. https://doi.org/10.4067/S0717-95022020000200292.

    Article  Google Scholar 

  15. Zhang K, Fu Q, Yoo J, Chen X, Chandra P, Mo X, Song L, Atala A, Zhao W. 3D bioprinting of urethra with PCL/PLCL blend and dual autologous cells in fibrin hydrogel: an in vitro evaluation of biomimetic mechanical property and cell growth environment. Acta Biomater. 2017 Mar 1;50:154–64. https://doi.org/10.1016/j.actbio.2016.12.008.

    Article  CAS  PubMed  Google Scholar 

  16. Shee K, Koo K, Wu X, Ghali FM, Halter RJ, Hyams ES. A novel ex vivo trainer for robotic vesicourethral anastomosis. J Robot Surg. 2019 Jan 28; https://doi.org/10.1007/s11701-019-00926-1.

  17. Priester A, Natarajan S, Le JD, Garritano J, Radosavcev B, Grundfest W, Margolis DJ, Marks LS, Huang J. A system for evaluating magnetic resonance imaging of prostate cancer using patient-specific 3D printed molds. Am J Clin Exp Urol. 2014 Jul 12;2(2):127–35.

    PubMed  PubMed Central  Google Scholar 

  18. Khan R, Aydin A, Khan MS, Dasgupta P, Ahmed K. Simulation-based training for prostate surgery. BJU Int. 2015 Oct;116(4):665–74. https://doi.org/10.1111/bju.12721.

    Article  PubMed  Google Scholar 

  19. Shin T, Ukimura O, Gill IS. Three-dimensional printed model of prostate anatomy and targeted biopsy-proven index tumor to facilitate nerve-sparing prostatectomy. Eur Urol. 2016 Feb;69(2):377–9. https://doi.org/10.1016/j.eururo.2015.09.024.

    Article  PubMed  Google Scholar 

  20. Wendler JJ, Klink F, Seifert S, Fischbach F, Jandrig B, Porsch M, Pech M, Baumunk D, Ricke J, Schostak M, Liehr UB. Irreversible electroporation of prostate cancer: patient-specific pretreatment simulation by electric field measurement in a 3D bioprinted textured prostate cancer model to achieve optimal electroporation parameters for image-guided focal ablation. Cardiovasc Intervent Radiol. 2016 Nov;39(11):1668–71. https://doi.org/10.1007/s00270-016-1390-6.

    Article  PubMed  Google Scholar 

  21. Zhang J, Zhang P, Wu L, Su J, Shen J, Fan H, Zhang X. Application of an individualized and reassemblable 3D printing navigation template for accurate puncture during sacral neuromodulation. Neurourol Urodyn. 2018 Nov;37(8):2776–81. https://doi.org/10.1002/nau.23769.

    Article  PubMed  Google Scholar 

  22. Parikh N, Sharma P. Three-dimensional printing in urology: history, current applications, and future directions. Urology. 2018 Nov;121:3–10. https://doi.org/10.1016/j.urology.2018.08.004.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İlkan Tatar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tatar, İ. (2021). Physical Models. In: Huri, E., Veneziano, D. (eds) Anatomy for Urologic Surgeons in the Digital Era. Springer, Cham. https://doi.org/10.1007/978-3-030-59479-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59479-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59478-7

  • Online ISBN: 978-3-030-59479-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics