Skip to main content

Three-Dimensional Medical Printing in Urology

  • Chapter
  • First Online:
Anatomy for Urologic Surgeons in the Digital Era
  • 778 Accesses

Abstract

Three-dimensional (3D) printers are devices that make 3D designs prepared in computer-aided design (CAD) programs into real 3D objects using various materials. For each patient, 3D models can be created for surgical planning, and these 3D models can be used both to inform the patient and to understand the treatment process. At the same time, using these models, education can be given in the field of medicine, or research assistants who are undergoing surgical training can be given the chance to undergo surgical training without the risk of harming the patient. With this novel technology, customized medical equipment and prosthesis can be produced for the patient. In this book section, it is aimed to review the applications of 3D printer technology in the field of urology, to evaluate its potential benefits and limitations, and to evaluate our future expectations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hull CW. Apparatus for production of three-dimensional objects by stereolithography. Google Patents; 1986.

    Google Scholar 

  2. Schubert C, van Langeveld MC, Donoso LA. Innovations in 3D printing: a 3D overview from optics to organs. Br J Ophthalmol. 2014;98(2):159–61.

    Article  PubMed  Google Scholar 

  3. Babic RR, Stankovic Babic G, Babic SR, Babic NR. 120 YEARS SINCE THE DISCOVERY OF X-RAYS. Med Pregl. 2016;69(9–10):323–30.

    Article  PubMed  Google Scholar 

  4. Cacciamani GE, Okhunov Z, Meneses AD, Rodriguez-Socarras ME, Rivas JG, Porpiglia F, et al. Impact of three-dimensional printing in urology: state of the art and future perspectives. A systematic review by ESUT-YAUWP Group. Eur Urol. 2019;76(2):209–21.

    Article  PubMed  Google Scholar 

  5. Parikh N, Sharma P. Three-dimensional printing in urology: history, current applications, and future directions. Urology. 2018;121:3–10.

    Article  PubMed  Google Scholar 

  6. Chen MY, Skewes J, Desselle M, Wong C, Woodruff MA, Dasgupta P, et al. Current applications of three-dimensional printing in urology. BJU Int. 2020;125(1):17–27.

    Article  PubMed  Google Scholar 

  7. Liaw CY, Guvendiren M. Current and emerging applications of 3D printing in medicine. Biofabrication. 2017;9(2):024102.

    Article  PubMed  CAS  Google Scholar 

  8. Wong KV, Hernandez A. A review of additive manufacturing. Int Scholarly Res Notices. 2012;2012

    Google Scholar 

  9. Upcraft S, Fletcher R. The rapid prototyping technologies. Assem Autom. 2003;23(4):318–30.

    Article  Google Scholar 

  10. Do A-V, Khorsand B, Geary SM, Salem AK. 3D printing of scaffolds for tissue regeneration applications. Adv Healthcare Mater. 2015;4(12):1742–62.

    Article  CAS  Google Scholar 

  11. Ozbolat IT. Scaffold-based or scaffold-free bioprinting: competing or complementing approaches? J Nanotechnol Eng Med. 2015;6(2).

    Google Scholar 

  12. Sachs EM, Haggerty JS, Cima MJ, Williams PA. Three-dimensional printing techniques. Google Patents; 1994.

    Google Scholar 

  13. Malda J, Visser J, Melchels FP, Jüngst T, Hennink WE, Dhert WJ, et al. 25th anniversary article: engineering hydrogels for biofabrication. Adv Mater (Deerfield Beach, Fl). 2013;25(36):5011–28.

    Article  CAS  Google Scholar 

  14. Shirazi SFS, Gharehkhani S, Mehrali M, Yarmand H, Metselaar HSC, Adib Kadri N, et al. A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing. Sci Technol Adv Mater. 2015;16(3):033502.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Kruth J-P, Mercelis P, Van Vaerenbergh J, Froyen L, Rombouts M. Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyp J. 2005;11(1):26–36.

    Article  Google Scholar 

  16. Kim GB, Lee S, Kim H, Yang DH, Kim Y-H, Kyung YS, et al. Three-dimensional printing: basic principles and applications in medicine and radiology. Korean J Radiol. 2016;17(2):182–97.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Billiet T, Vandenhaute M, Schelfhout J, Van Vlierberghe S, Dubruel P. A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials. 2012;33(26):6020–41.

    Article  CAS  PubMed  Google Scholar 

  18. Ghazi A, Campbell T, Melnyk R, Feng C, Andrusco A, Stone J, et al. Validation of a full-immersion simulation platform for percutaneous nephrolithotomy using three-dimensional printing technology. J Endourol. 2017;31(12):1314–20.

    Article  PubMed  Google Scholar 

  19. Atalay HA, Ulker V, Alkan I, Canat HL, Ozkuvanci U, Altunrende F. Impact of three-dimensional printed pelvicaliceal system models on residents’ understanding of pelvicaliceal system anatomy before percutaneous nephrolithotripsy surgery: a pilot study. J Endourol. 2016;30(10):1132–7.

    Article  PubMed  Google Scholar 

  20. Atalay HA, Canat HL, Ulker V, Alkan I, Ozkuvanci U, Altunrende F. Impact of personalized three-dimensional – 3D-printed pelvicalyceal system models on patient information in percutaneous nephrolithotripsy surgery: a pilot study. Int Braz J Urol. 2017;43(3):470–5.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Antonelli JA, Beardsley H, Faddegon S, Morgan MS, Gahan JC, Pearle MS, et al. A novel device to prevent stone fragment migration during percutaneous lithotripsy: results from an in vitro kidney model. J Endourol. 2016;30(11):1239–43.

    Article  PubMed  Google Scholar 

  22. Xu Y, Yuan Y, Cai Y, Li X, Wan S, Xu G. Use 3D printing technology to enhance stone free rate in single tract percutaneous nephrolithotomy for the treatment of staghorn stones. Urolithiasis. 2019;

    Google Scholar 

  23. Bianchi L, Schiavina R, Barbaresi U, Angiolini A, Pultrone CV, Manferrari F, et al. 3D Reconstruction and physical renal model to improve percutaneous punture during PNL. Int Braz J Urol. 2019;45(6):1281–2.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Canat L, Atalay HA, Degirmentepe RB, Bayraktarli R, Aykan S, Cakir SS, et al. Stone volume measuring methods: should the CT based three-dimensional-reconstructed algorithm be proposed as the gold standard? What did the three-dimensional printed models show us? Arch Esp Urol. 2019;72(6):596–601.

    PubMed  Google Scholar 

  25. Kuroda S, Kawahara T, Teranishi J, Mochizuki T, Ito H, Uemura H. A case of allograft ureteral stone successfully treated with antegrade ureteroscopic lithotripsy: use of a 3D-printed model to determine the ideal approach. Urolithiasis. 2019;47(5):467–71.

    Article  PubMed  Google Scholar 

  26. Smektala T, Golab A, Krolikowski M, Slojewski M. Low cost silicone renal replicas for surgical training – technical note. Arch Esp Urol. 2016;69(7):434–6.

    CAS  PubMed  Google Scholar 

  27. Wake N, Rude T, Kang SK, Stifelman MD, Borin JF, Sodickson DK, et al. 3D printed renal cancer models derived from MRI data: application in pre-surgical planning. Abdominal Radiol (New York). 2017;42(5):1501–9.

    Article  Google Scholar 

  28. Westerman ME, Matsumoto JM, Morris JM, Leibovich BC. Three-dimensional printing for renal cancer and surgical planning. Eur Urol Focus. 2016;2(6):574–6.

    Article  PubMed  Google Scholar 

  29. Golab A, Slojewski M, Brykczynski M, Lukowiak M, Boehlke M, Matias D, et al. Three-dimensional printing as an interdisciplinary communication tool: preparing for removal of a giant renal tumor and atrium neoplastic mass. Heart Surg Forum. 2016;19(4):E185–6.

    Article  PubMed  Google Scholar 

  30. Jian C, Shuai Z, Mingji Y, Kan L, Zhizhong L, Weiqing H, et al. Evaluation of three-dimensional printing assisted laparoscopic cryoablation of small renal tumors: a preliminary report. Urol J. 2020;

    Google Scholar 

  31. Mercader C, Vilaseca A, Moreno JL, Lopez A, Sebastia MC, Nicolau C, et al. Role of the three-dimensional printing technology incomplex laparoscopic renal surgery: a renal tumor in a horseshoe kidney. Int Braz J Urol. 2019;45(6):1129–35.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Fan Y, Wong RHL, Lee AP. Three-dimensional printing in structural heart disease and intervention. Ann Transl Med. 2019;7(20):579.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kyung YS, Kim N, Jeong IG, Hong JH, Kim CS. Application of 3-D printed kidney model in partial nephrectomy for predicting surgical outcomes: a feasibility study. Clin Genitourin Cancer. 2019;17(5):e878–e84.

    Article  PubMed  Google Scholar 

  34. Wake N, Wysock JS, Bjurlin MA, Chandarana H, Huang WC. “Pin the tumor on the kidney”: an evaluation of how surgeons translate CT and MRI data to 3D models. Urology. 2019;131:255–61.

    Article  PubMed  Google Scholar 

  35. Bejrananda T, Liawrungrueang W. Successful transitional cell carcinoma of bladder underwent laparoscopic radical cystectomy with orthotopic intracorporeal Y pouch neobladder using a 3D digital printing model for surgical post op pouch evaluation. Urol Case Rep. 2020;31:101190.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rutkowski DR, Wells SA, Johnson B, Huang W, Jarrard DF, Lang JM, et al. Mri-based cancer lesion analysis with 3d printed patient specific prostate cutting guides. Am J Clin Exp Urol. 2019;7(4):215–22.

    PubMed  PubMed Central  Google Scholar 

  37. Sun G, Ding B, Yu G, Chen L, Wang Z, Wang S, et al. Three-dimensional printing – assisted planning for complete and safe resection of retroperitoneal tumor. J Xray Sci Technol. 2020;28(3):471–80.

    PubMed  Google Scholar 

  38. Kusaka M, Sugimoto M, Fukami N, Sasaki H, Takenaka M, Anraku T, et al. Initial experience with a tailor-made simulation and navigation program using a 3-D printer model of kidney transplantation surgery. Transplant Proc. 2015;47(3):596–9.

    Article  CAS  PubMed  Google Scholar 

  39. Joshi PM, Kulkarni SB. 3D printing of pelvic fracture urethral injuries-fusion of technology and urethroplasty. Turk J Urol. 2020;46(1):76–9.

    Article  PubMed  Google Scholar 

  40. Wang H, Guo YT, Jiao Y, He DL, Wu B, Yuan LJ, et al. A minimally invasive alternative for the treatment of nutcracker syndrome using individualized three-dimensional printed extravascular titanium stents. Chin Med J. 2019;132(12):1454–60.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hasan T. Is dissection humane? J Med Ethics Hist Med. 2011;4:4.

    PubMed  PubMed Central  Google Scholar 

  42. Tatar I, Huri E, Selcuk I, Moon YL, Paoluzzi A, Skolarikos A. Review of the effect of 3D medical printing and virtual reality on urology training with ‘MedTRain3DModsim’ Erasmus + European Union Project. Turk J Med Sci. 2019;49(5):1257–70.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Guliev B, Komyakov B, Talyshinskii A. The use of the three-dimensional printed segmented collapsible model of the pelvicalyceal system to improve residents’ learning curve. Turk J Urol. 2020;46(3):226–30.

    Article  PubMed  Google Scholar 

  44. Aro T, Lim S, Petrisor D, Koo K, Matlaga B, Stoianovici D. Personalized renal collecting system mockup for procedural training under ultrasound guidance. J Endourol. 2020;34(5):619–23.

    Article  PubMed  Google Scholar 

  45. Melnyk R, Ezzat B, Belfast E, Saba P, Farooq S, Campbell T, et al. Mechanical and functional validation of a perfused, robot-assisted partial nephrectomy simulation platform using a combination of 3D printing and hydrogel casting. World J Urol. 2020;38(7):1631–41.

    Article  CAS  PubMed  Google Scholar 

  46. Wang Y, Gao X, Yang Q, Wang H, Shi T, Chang Y, et al. Three-dimensional printing technique assisted cognitive fusion in targeted prostate biopsy. Asian J Urol. 2015;2(4):214–9.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Nguyen LN, Head L, Witiuk K, Punjani N, Mallick R, Cnossen S, et al. The risks and benefits of cavernous neurovascular bundle sparing during radical prostatectomy: a systematic review and meta-analysis. J Urol. 2017;198(4):760–9.

    Article  PubMed  Google Scholar 

  48. Jomoto W, Tanooka M, Doi H, Kikuci K, Mitsuie C, Yamada Y, et al. Development of a three-dimensional surgical navigation system with magnetic resonance angiography and a three-dimensional printer for robot-assisted radical prostatectomy. Cureus. 2018;10(1):e2018-e.

    Google Scholar 

  49. Wendler JJ, Klink F, Seifert S, Fischbach F, Jandrig B, Porsch M, et al. Irreversible electroporation of prostate cancer: patient-specific pretreatment simulation by electric field measurement in a 3D bioprinted textured prostate cancer model to achieve optimal electroporation parameters for image-guided focal ablation. Cardiovasc Intervent Radiol. 2016;39(11):1668–71.

    Article  PubMed  Google Scholar 

  50. Wang J, Zhang F, Guo J, Chai S, Zheng G, Zhang K, et al. Expert consensus workshop report: Guideline for three-dimensional printing template-assisted computed tomography-guided 125I seeds interstitial implantation brachytherapy. J Cancer Res Ther. 2017;13(4):607.

    Article  PubMed  Google Scholar 

  51. Choi E, Adams F, Palagi S, Gengenbacher A, Schlager D, Muller PF, et al. A high-fidelity phantom for the simulation and quantitative evaluation of transurethral resection of the prostate. Ann Biomed Eng. 2020;48(1):437–46.

    Article  PubMed  Google Scholar 

  52. Witthaus MW, Farooq S, Melnyk R, Campbell T, Saba P, Mathews E, et al. Incorporation and validation of clinically relevant performance metrics of simulation (CRPMS) into a novel full-immersion simulation platform for nerve-sparing robot-assisted radical prostatectomy (NS-RARP) utilizing three-dimensional printing and hydrogel casting technology. BJU Int. 2020;125(2):322–32.

    Article  PubMed  Google Scholar 

  53. Srougi V, Rocha BA, Tanno FY, Almeida MQ, Baroni RH, Mendonca BB, et al. The use of three-dimensional printers for partial adrenalectomy: estimating the resection limits. Urology. 2016;90:217–20.

    Article  PubMed  Google Scholar 

  54. Cheung CL, Looi T, Lendvay TS, Drake JM, Farhat WA. Use of 3-dimensional printing technology and silicone modeling in surgical simulation: development and face validation in pediatric laparoscopic pyeloplasty. J Surgic Educ. 2014;71(5):762–7.

    Article  Google Scholar 

  55. Pinto L, de Barros CAV, de Lima AB, Dos Santos DR, de Bacelar HPH. Portable model for vasectomy reversal training. Int Braz J Urol. 2019;45(5):1013–9.

    Article  PubMed  PubMed Central  Google Scholar 

  56. del Junco M, Yoon R, Okhunov Z, Abedi G, Hwang C, Dolan B, et al. Comparison of flow characteristics of novel three-dimensional printed ureteral stents versus standard ureteral stents in a porcine model. J Endourol. 2015;29(9):1065–9.

    Article  PubMed  Google Scholar 

  57. Chang-Ju P, Hyeon-Woo K, Sangdo J, Seungwan S, Yangkyu P, Sang MH, et al. Anti-reflux ureteral stent with polymeric flap valve using three-dimensional printing: an in vitro study. J Endourol. 2015;29(8):933–8.

    Article  Google Scholar 

  58. Russo GI, Di Mauro M, Cimino S. Use of 3D printing in andrological surgery: what are the new perspectives. Int J Impot Res. 2019;

    Google Scholar 

  59. Zhang K, Fu Q, Yoo J, Chen X, Chandra P, Mo X, et al. 3D bioprinting of urethra with PCL/PLCL blend and dual autologous cells in fibrin hydrogel: an in vitro evaluation of biomimetic mechanical property and cell growth environment. Acta Biomater. 2017;50:154–64.

    Article  CAS  PubMed  Google Scholar 

  60. Kim MJ, Chi BH, Yoo JJ, Ju YM, Whang YM, Chang IH. Structure establishment of three-dimensional (3D) cell culture printing model for bladder cancer. PLoS One. 2019;14(10):e0223689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ezer, M., Huri, E. (2021). Three-Dimensional Medical Printing in Urology. In: Huri, E., Veneziano, D. (eds) Anatomy for Urologic Surgeons in the Digital Era. Springer, Cham. https://doi.org/10.1007/978-3-030-59479-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59479-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59478-7

  • Online ISBN: 978-3-030-59479-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics