Skip to main content

Enhancing Linear Time Complexity Time Series Classification with Hybrid Bag-Of-Patterns

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12112))

Included in the following conference series:

Abstract

In time series classification, one of the most popular models is Bag-Of-Patterns (BOP). Most BOP methods run in super-linear time. A recent work proposed a linear time BOP model, yet it has limited accuracy. In this work, we present Hybrid Bag-Of-Patterns (HBOP), which can greatly enhance accuracy while maintaining linear complexity. Concretely, we first propose a novel time series discretization method called SLA, which can retain more information than the classic SAX. We use a hybrid of SLA and SAX to expressively and compactly represent subsequences, which is our most important design feature. Moreover, we develop an efficient time series transformation method that is key to achieving linear complexity. We also propose a novel X-means clustering subroutine to handle subclasses. Extensive experiments on over 100 datasets demonstrate the effectiveness and efficiency of our method.

This work is funded by NSFC Grant 61672161 and Dongguan Innovative Research Team Program 2018607201008. We sincerely thank Dr Hoang Anh Dau from University of California, Riverside for responding to our inquiries on the UCR Archive  [5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here we have ignored the Fungi dataset on which we have obtained abnormally short classification time for BOPF. See  [1] for more on this.

References

  1. HBOP code. https://github.com/sliang11/Hybrid-Bag-Of-Patterns

  2. Bagnall, A., Lines, J., Hills, J., Bostrom, A.: Time-series classification with COTE: the collective of transformation-based ensembles. IEEE Trans. Knowl. Data Eng. 27(9), 2522–2535 (2015)

    Article  Google Scholar 

  3. Calbimonte, J., Yan, Z., Jeung, H., Corcho, Ó., Aberer, K.: Deriving semantic sensor metadata from raw measurements. In: SSN 2012, pp. 33–48 (2012)

    Google Scholar 

  4. Dau, H.A., et al.: The UCR Time Series Archive. CoRR abs/1810.07758 (2018)

    Google Scholar 

  5. Dau, H.A., et al.: Hexagon-ML: The UCR Time Series Classification Archive, October 2018. https://www.cs.ucr.edu/~eamonn/time_series_data_2018/

  6. Demsar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  7. Grabocka, J., Schilling, N., Wistuba, M., Schmidt-Thieme, L.: Learning time-series shapelets. In: KDD 2014, pp. 392–401 (2014)

    Google Scholar 

  8. Grabocka, J., Wistuba, M., Schmidt-Thieme, L.: Scalable classification of repetitive time series through frequencies of local polynomials. IEEE Trans. Knowl. Data Eng. 27(6), 1683–1695 (2015)

    Article  Google Scholar 

  9. Hills, J., Lines, J., Baranauskas, E., Mapp, J., Bagnall, A.: Classification of time series by shapelet transformation. Data Min. Knowl. Disc. 28(4), 851–881 (2014). https://doi.org/10.1007/s10618-013-0322-1

    Article  MathSciNet  MATH  Google Scholar 

  10. Jessica, L., Rohan, K., Yuan, L.: Rotation-invariant similarity in time series using bag-of-patterns representation. J. Intell. Inf. Syst. 39(2), 287–315 (2012)

    Article  Google Scholar 

  11. Keogh, E., Chakrabarti, K., Pazzani, M., Mehrotra, S.: Dimensionality reduction for fast similarity search in large time series databases. Knowl. Inf. Syst. 3(3), 263–286 (2001)

    Article  Google Scholar 

  12. Li, X., Lin, J.: Linear time complexity time series classification with bag-of-pattern-features. In: ICDM 2017, pp. 277–286 (2017)

    Google Scholar 

  13. Lin, J., Keogh, E., Li, W., Lonardi, S.: Experiencing SAX: a novel symbolic representation of time series. Data Min. Knowl. Disc. 15(2), 107 (2007). https://doi.org/10.1007/s10618-007-0064-z

    Article  MathSciNet  Google Scholar 

  14. Malinowski, S., Guyet, T., Quiniou, R., Tavenard, R.: 1d-SAX: a novel symbolic representation for time series. In: Tucker, A., Höppner, F., Siebes, A., Swift, S. (eds.) IDA 2013. LNCS, vol. 8207, pp. 273–284. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41398-8_24

    Chapter  Google Scholar 

  15. Mueen, A., Keogh, E., Young, N.: Logical-shapelets: an expressive primitive for time series classification. In: KDD 2011, pp. 1154–1162 (2011)

    Google Scholar 

  16. Pelleg, D., Moore, A.: X-means: extending K-means with efficient estimation of the number of clusters. In: ICML 2000, pp. 727–734 (2000)

    Google Scholar 

  17. Rakthanmanon, T., Keogh, E.: Fast shapelets: a scalable algorithm for discovering time series shapelets. In: SDM 2013, pp. 668–676 (2013)

    Google Scholar 

  18. Schäfer, P.: The BOSS is concerned with time series classification in the presence of noise. Data Min. Knowl. Disc. 29(6), 1505–1530 (2015). https://doi.org/10.1007/s10618-014-0377-7

    Article  MathSciNet  MATH  Google Scholar 

  19. Schäfer, P.: Scalable time series classification. Data Min. Knowl. Disc. 30(5), 1273–1298 (2016). https://doi.org/10.1007/s10618-015-0441-y

    Article  MathSciNet  MATH  Google Scholar 

  20. Schäfer, P., Högqvist, M.: SFA: a symbolic fourier approximation and index for similarity search in high dimensional datasets. In: EDBT 2012, pp. 516–527 (2012)

    Google Scholar 

  21. Schäfer, P., Leser, U.: Fast and accurate time series classification with WEASEL. In: CIKM 2017, pp. 637–646 (2017)

    Google Scholar 

  22. Senin, P., Malinchik, S.: SAX-VSM: interpretable time series classification using SAX and vector space model. In: ICDM 2013, pp. 1175–1180 (2013)

    Google Scholar 

  23. Wang, X., Mueen, A., Ding, H., Trajcevski, G., Scheuermann, P., Keogh, E.: Experimental comparison of representation methods and distance measures for time series data. Data Min. Knowl. Disc. 26(2), 275–309 (2013). https://doi.org/10.1007/s10618-012-0250-5

    Article  MathSciNet  Google Scholar 

  24. Ye, L., Keogh, E.: Time series shapelets: a novel technique that allows accurate, interpretable and fast classification. Data Min. Knowl. Disc. 22(1–2), 149–182 (2011). https://doi.org/10.1007/s10618-010-0179-5

    Article  MathSciNet  MATH  Google Scholar 

  25. Yuan, J., Lin, Q., Zhang, W., Wang, Z.: Locally slope-based dynamic time warping for time series classification. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM 2019, pp. 1713–1722 (2019)

    Google Scholar 

  26. Zhao, J., Itti, L.: shapeDTW: shape dynamic time warping. Pattern Recogn. 74, 171–184 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanchun Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liang, S., Zhang, Y., Ma, J. (2020). Enhancing Linear Time Complexity Time Series Classification with Hybrid Bag-Of-Patterns. In: Nah, Y., Cui, B., Lee, SW., Yu, J.X., Moon, YS., Whang, S.E. (eds) Database Systems for Advanced Applications. DASFAA 2020. Lecture Notes in Computer Science(), vol 12112. Springer, Cham. https://doi.org/10.1007/978-3-030-59410-7_50

Download citation

Publish with us

Policies and ethics