Skip to main content

Laser-Induced Synthesis and Processing of Nanoparticles in the Liquid Phase for Biosensing and Catalysis

  • Chapter
  • First Online:
Laser Micro-Nano-Manufacturing and 3D Microprinting

Abstract

Laser ablation (LAL) and irradiation in liquids (LIL) are becoming two of the most studied and dominant ways of synthesis and modification for nanostructured materials. Such rapid development is due to a fast and economic way to obtain nanoparticles of any material. Starting from solid targets submerged in water or other liquids, it is possible to obtain noble metals, metal alloys, metal oxides, and graphene nanoparticles, simply by irradiating the target with a focused laser beam. Moreover, it is also possible to modify already existing nanoparticles, generating defects in their structures or reshaping them, through laser irradiation of their colloidal dispersion using an unfocused laser beam. In this chapter, a focus on the fundaments of laser ablation and modification in liquids is reported as well as some advances in the synthesis and modification of new nanostructures with their relative application in different fields of research such as bio-sensing, catalysis, and optoelectronics. The example of the synthesis of ultra-pure silver nanoparticles by LAL and their application as surface-enhanced Raman scattering (SERS) active substrate for biosensing application is provided. In such a study, it is possible to detect and characterize a protein involved in diabetes mellitus type 2 (amylin), at nanomolar concentration. LIL has been also considered to modify commercial TiO2 and graphene oxide (GO) colloids. Such unconventional treatment has shown to enhance the performances of these two materials, towards photocatalytic water splitting and water purification applications, thanks to the modification of the morphology and oxygen functionalities of these materials. As an added value, the LIL of TiO2 and GO is a more green technique and tunable methodology concerning conventional reduction methods. Laser irradiation of GO results in conferring to the material an antimicrobial activity not shown by the untreated one. Similarly, the performance in the photocatalytic H2 production of laser-treated TiO2 samples is examined pointing out that the TiO2 structural modifications induced by the LIL process are fundamentals to strongly increase the photocatalytic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Schmid, Nanoparticles: From Theory to Application (Wiley, 2006)

    Google Scholar 

  2. S.K. Kulkarni, Nanotechnology: Principles and Practices (Springer, 2014)

    Google Scholar 

  3. D. Vollath, Nanomaterials: An Introduction to Synthesis, Properties and Applications (Wiley, 2012)

    Google Scholar 

  4. J. Jeevanandam, A. Barhoum, Y.S. Chan et al., Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J. Nanotechnol. 9, 1050–1074 (2018)

    Article  Google Scholar 

  5. M. Shafiq, S. Anjum, C. Hano et al., An overview of the applications of nanomaterials and nanodevices in the food industry. Foods 9, 148 (2020)

    Article  Google Scholar 

  6. H. Wang, X. Liang, J. Wang et al., Multifunctional inorganic nanomaterials for energy applications. Nanoscale 12, 14–42 (2020)

    Article  Google Scholar 

  7. M. Rycenga, C.M. Cobley, J. Zeng et al., Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 111, 3669–3712 (2011)

    Article  Google Scholar 

  8. X. Zhang, A. Hu, T. Zhang et al., Self-assembly of large-scale and ultrathin silver nanoplate films with tunable plasmon resonance properties. ACS Nano 5, 9082–9092 (2011)

    Article  Google Scholar 

  9. D. Zhang, B. Gökce, S. Barcikowski, Laser synthesis and processing of colloids: fundamentals and applications. Chem. Rev. 117, 3990–4103 (2017)

    Article  Google Scholar 

  10. S. Barcikowski, G. Compagnini, Advanced nanoparticle generation and excitation by lasers in liquids. Phys. Chem. Chem. Phys. 15, 3022–3026 (2013)

    Article  Google Scholar 

  11. G.W. Yang, Laser ablation in liquids: applications in the synthesis of nanocrystals. Prog. Mater Sci. 52, 648–698 (2007)

    Article  Google Scholar 

  12. V. Amendola, M. Meneghetti, Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles. Phys. Chem. Chem. Phys. 11, 3805–3821 (2009)

    Article  Google Scholar 

  13. F. Taccogna, M. Dell’Aglio, M. Rutigliano et al., On the growth mechanism of nanoparticles in plasma during pulsed laser ablation in liquids. Plasma Sources Sci. Technol. 26, 045002 (2017) (10pp)

    Google Scholar 

  14. G. Yang, Laser Ablation in Liquids: Principles and Applications in the Preparation of Nanomaterials (Pan, Stanford, 2012)

    Google Scholar 

  15. V. Amendola, D. Amans, Y. Ishikawa et al., Room‐temperature laser synthesis in liquid of oxide, metal‐oxide core‐shells and doped oxide nanoparticles. Chem. A Eur. J. 26(42) (2020)

    Google Scholar 

  16. G. González-Rubio, A. Guerrero-Martínez, L.M. Liz-Marzán, Reshaping, fragmentation, and assembly of gold nanoparticles assisted by pulse lasers. Acc. Chem. Res. 49, 678–686 (2016)

    Article  Google Scholar 

  17. L. Delfour, T.E. Itina, Mechanisms of ultrashort laser-induced fragmentation of metal nanoparticles in liquids: numerical insights. J. Phys. Chem. C 119, 13893–13900 (2015)

    Google Scholar 

  18. H. Wang, A. Pyatenko, K. Kawaguchi et al., Selective pulsed heating for the synthesis of semiconductor and metal submicrometer spheres. Angew. Chem. Int. Ed. 49, 6361–6364 (2010)

    Article  Google Scholar 

  19. H. Wang, A. Pyatenko, K. Kawaguchi et al., General bottom-up construction of spherical particles by pulsed laser irradiation of colloidal nanoparticles: a case study on CuO. Chem. Eur. J. 18, 163–169 (2012)

    Article  Google Scholar 

  20. G. Messina, M. Sinatra, V. Bonanni et al., Tuning the composition of alloy nanoparticles through laser mixing: the role of surface plasmon resonance. J. Phys. Chem. C 120, 12810–12818 (2016)

    Article  Google Scholar 

  21. G. Compagnini, E. Messina, O. Puglisi et al., Laser synthesis of Au/Ag colloidal nano-alloys: optical properties, structure and composition. Appl. Surf. Sci. 254, 1007–1011 (2007)

    Article  ADS  Google Scholar 

  22. R. Fabbro, P. Peyer, L. Berthe et al., Physics and applications of laser-shock processing. J. Laser Appl. 10, 265–279 (1998)

    Article  ADS  Google Scholar 

  23. L. Berthe, R. Fabbro, P. Peyer et al., Shock waves from a water-confined laser-generated plasma. J. Appl. Phys. 82, 2826–2832 (1997)

    Article  ADS  Google Scholar 

  24. T. Sakka, S. Yawanage, Y.H. Ogata et al., Laser ablation at solid–liquid interfaces: an approach from optical emission spectra. J. Chem. Phys. 112, 8645–8653 (2000)

    Article  ADS  Google Scholar 

  25. K. Saito, K. Takatani, T. Sakka et al., Observation of the light emitting region produced by pulsed laser irradiation to a solid–liquid interface. Appl. Surf. Sci. 197, 56–60 (2002)

    Article  ADS  Google Scholar 

  26. L. Berthe, A. Sollier, R. Fabbro et al., The generation of laser shock waves in a water-confinement regime with 50 ns and 150 ns XeCl excimer laser pulses. J. Phys. D Appl. Phys. 33, 2142–2145 (2000)

    Article  ADS  Google Scholar 

  27. D. Liu, C. Li, F. Zhou et al., Rapid synthesis of monodisperse au nanospheres through a laser irradiation-induced shape conversion, self-assembly and their electromagnetic coupling. Sci. Rep. 5, 7686 (2015) (9pp)

    Google Scholar 

  28. Y. Chen, Y. Tseng, C. Yeh, Laser-induced alloying Au–Pd and Ag–Pd colloidal mixtures: the formation of dispersed Au/Pd and Ag/Pd nanoparticles. J. Mater. Chem. 12, 1419–1422 (2002)

    Article  Google Scholar 

  29. M.A. Buccheri, D. D’Angelo, S. Scalese et al., Modification of graphene oxide by laser irradiation: a new route to enhance antibacterial activity. Nanotechnology 27, 245704 (2016) (12pp)

    Google Scholar 

  30. X. Li, A. Pyatenko, Y. Shimizu et al., Fabrication of crystalline silicon spheres by selective laser heating in liquid medium. Langmuir 27, 5076–5080 (2011)

    Article  Google Scholar 

  31. A. Pyatenko, M. Yamaguchi, M. Suzuki, Mechanisms of size reduction of colloidal silver and gold nanoparticles irradiated by Nd: YAG Laser. J. Phys. Chem. C 113, 9078–9085 (2009)

    Article  Google Scholar 

  32. M. Fleischmann, P.J. Hendra, A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26, 163–166 (1974)

    Article  ADS  Google Scholar 

  33. D.L. Jeanmaire, R.P. Van Duyne, Surface Raman electrochemistry. Part 1. Heterocyclic, aromatic and aliphatic amines adsorbed on the anodised silver electrode. J. Electroanal. Chem. 84, 1–20 (1977)

    Article  Google Scholar 

  34. M.G. Albrecht, J.A. Creighton, Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 99, 5215–5219 (1977)

    Article  Google Scholar 

  35. R.P. Van Duyne, Laser excitation of Raman scattering from adsorbed molecules on electrode surfaces. Chem. Biochem. Appl. Lasers 4, 101–185 (1979)

    Article  Google Scholar 

  36. E.C. Le Ru, E. Blackie, M. Meyer et al., Surface enhanced Raman scattering enhancement factors: a comprehensive study. J. Phys. Chem. C 111, 13794–13803 (2007)

    Article  Google Scholar 

  37. S. Nie, S.R. Emory, Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997)

    Article  Google Scholar 

  38. G. Chen, Y. Wang, M. Yang et al., Measuring ensemble-averaged surface-enhanced Raman scattering in the hotspots of colloidal nanoparticle dimers and trimers. Am. Chem. Soc. 132, 3644–3645 (2010)

    Article  Google Scholar 

  39. J.A. Hebda, A.D. Miranker, The interplay of catalysis and toxicity by amyloid intermediates on lipid bilayers: insights from type II diabetes. Biophysics 38, 125–152 (2009)

    Google Scholar 

  40. F.E. Cohen, S.B. Prusiner, Pathologic conformations of prion proteins. Ann. Rev. Biochem. 67, 793–819 (1998)

    Article  Google Scholar 

  41. M. Pappalardo, M. Milardi, D. Grasso et al., Steered molecular dynamics studies reveal different unfolding pathways of prions from mammalian and non-mammalian species. New J. Chem. 31, 901–905 (2007)

    Article  Google Scholar 

  42. D. Milardi, M.F.M. Sciacca, M. Pappalardo et al., The role of aromatic side-chains in amyloid growth and membrane interaction of the islet amyloid polypeptide fragment LANFLVH. Eur. Biophys. J. 40, 1–12 (2011)

    Article  Google Scholar 

  43. R. Soong, J.R. Brender, P.M. Macdonald et al., Association of highly compact type II diabetes related islet amyloid polypeptide intermediate species at physiological temperature revealed by diffusion NMR spectroscopy. J. Am. Chem. Soc. 131, 7079–7085 (2009)

    Article  Google Scholar 

  44. S. Scalisi, M.F.M. Sciacca, G. Zhavnerko et al., Self-assembling pathway of HiApp fibrils within lipid bilayers. Chem. BioChem. 11, 1856–1859 (2010)

    Google Scholar 

  45. P. Arosio, T.P.J. Knowles, S. Linse, On the lag phase in amyloid fibril formation. Phys. Chem. Chem. Phys. 17, 7606–7618 (2015)

    Article  Google Scholar 

  46. S.A. Hudson, T. Ecroyd, W. Kee et al., The thioflavin T fluorescence assay for amyloid fibril detection can be biased by the presence of exogenous compounds. FEBS 276, 5960–5972 (2009)

    Article  Google Scholar 

  47. R.N. Rambaran, L.C. Serpell, Amyloid fibrils. Prion 2, 112–117 (2008)

    Article  Google Scholar 

  48. M. Pannuzzo, D. Milardi, A. Raudino et al., Analytical model and multiscale simulations of Aβ peptide aggregation in lipid membranes: towards a unifying description of conformational transitions, oligomerization and membrane damage. Phys. Chem. Chem. Phys. 15, 8940–8951 (2013)

    Article  Google Scholar 

  49. V. Amendola, M. Meneghetti, S. Fiameni et al., SERS labels for quantitative assays: application to the quantification of gold nanoparticles uptaken by macrophage cells. Anal. Methods 3, 849–856 (2011)

    Article  Google Scholar 

  50. G. Grasso, L. D’Urso, E. Messina et al., A mass spectrometry and surface enhanced Raman spectroscopy study of the interaction between linear carbon chains and noble metals. Carbon 47, 2611–2619 (2009)

    Article  Google Scholar 

  51. I. ChoiYun, S. Huh, D. Erickson et al., Ultra-sensitive, label-free probing of the conformational characteristics of amyloid beta aggregates with a SERS active nanofluidic device. Microfluid. Nanofluid. 1, 663–669 (2012)

    Google Scholar 

  52. D. Bhowmik, K.R. Mote, C.M. MacLaughlin et al., Cell-membrane-mimicking lipid-coated nanoparticles confer Raman enhancement to membrane proteins and reveal membrane-attached amyloid-β conformation. ACS Nano 9, 9070–9077 (2015)

    Article  Google Scholar 

  53. D. Kurouski, T. Deckert-Gaudig, V. Deckert et al., Surface characterization of insulin protofilaments and fibril polymorphs using tip-enhanced Raman spectroscopy (TERS). Biophys. J. 106, 263–271 (2014)

    Article  ADS  Google Scholar 

  54. D. Zhang, O. Neumann, H. Wang, V.M. Yuwono et al., Gold nanoparticles can induce the formation of protein-based aggregates at physiological pH. Nano Lett. 9, 666–671 (2009)

    Article  ADS  Google Scholar 

  55. Y. Liao, Y. Chang, Y. Yoshiike et al., Negatively charged gold nanoparticles inhibit Alzheimer’s amyloid-β fibrillization, induce fibril dissociation, and mitigate neurotoxicity. Small 8, 3631–3639 (2012)

    Article  Google Scholar 

  56. G. Brancolini, A. Corazza, M. Vuano et al., Probing the influence of citrate-capped gold nanoparticles on an amyloidogenic protein. ACS Nano 9, 2600–2613 (2015)

    Article  Google Scholar 

  57. C. Rehbock, J. Jakobi, L. Gamrad et al., Current state of laser synthesis of metal and alloy nanoparticles as ligand-free reference materials for nano-toxicological assays. J. Nanotechnol. 5, 1523–1541 (2014)

    Google Scholar 

  58. W.H. Moore, S. Krimm, Vibrational analysis of peptides, polypeptides, and proteins. II. β-poly(L-alanine) and β-poly(L-alanylglycine). Biopolymers 15, 2465–2483 (1976)

    Article  Google Scholar 

  59. W.L. Peticolas, Applications of Raman spectroscopy to biological macromolecules. Biochimie 57(4), 417–428 (1975)

    Article  Google Scholar 

  60. B.G. Frushour, P.C. Painter, J.L. Koenig, Vibrational spectra of polypeptides. J. Macromol. Chem. 15, 29–115 (1976)

    Article  Google Scholar 

  61. T.G. Spiro, B.P. Gaber, Laser Raman scattering as a probe of protein structure. Annu. Rev. Biochem. 46, 553–572 (1977)

    Article  Google Scholar 

  62. J.F. Rabolt, W.H. Moore, S. Krimm, Vibrational analysis of peptides, polypeptides, and proteins. 3. alpha-poly(L-alanine). Macromolecules 10, 1065–1074 (1977)

    Article  ADS  Google Scholar 

  63. J. Bandekar, S. Krimmt, Vibrational analysis of peptides, polypeptides, and proteins: characteristic amide bands of β-turns. Biophysics 76, 774–777 (1979)

    Google Scholar 

  64. C. Cabaleiro-Lago, F. Quinlan-Pluck, I. Lynch et al., Inhibition of amyloid β protein fibrillation by polymeric nanoparticles. J. Am. Chem. Soc. 130, 15437–15443 (2008)

    Article  Google Scholar 

  65. L. D’Urso, M. Condorelli, O. Puglisi et al., Detection and characterization at nM concentration of oligomers formed by hIAPP, Aβ(1–40) and their equimolar mixture using SERS and MD simulations. Phys. Chem. Chem. Phys. 20, 20588–20596 (2018)

    Article  Google Scholar 

  66. A. Mendez, F. Fernandez, G. Gasco, Removal of malachite green using carbon-based adsorbents. Desalination 206, 147–153 (2007)

    Article  Google Scholar 

  67. M.Z. Iqbal, A.A. Abdala, Thermally reduced graphene: synthesis, characterization and dye removal applications. RSC Adv. 3, 24455–24464 (2013)

    Article  Google Scholar 

  68. S. Filice, M. Mazurkiewicz-Pawlicka, A. Malolepszy et al., Sulfonated pentablock copolymer membranes and graphene oxide addition for efficient removal of metal ions from water. Nanomaterials 10, 1157 (2020)

    Article  Google Scholar 

  69. M.J. Lü, J. Li, X.Y. Yang et al., Applications of graphene-based materials in environmental protection and detection. Chin. Sci. Bull. 58, 2698–2710 (2013)

    Article  Google Scholar 

  70. S. Scalese, I. Nicotera, D. D’Angelo et al., Cationic and anionic azo-dye removal from water by sulfonated graphene oxide nanosheets in Nafion membranes. New J. Chem. 40, 3654–3663 (2016)

    Article  Google Scholar 

  71. S. Yanga, S. Chena, Y. Changa, A. Caoa et al., Removal of methylene blue from aqueous solution by graphene oxide. J. Coll. Int. Sci. 359, 24–29 (2011)

    Article  ADS  Google Scholar 

  72. S.F. Spanò, G. Isgrò, P. Russo et al., Tunable properties of graphene oxide reduced by laser irradiation. Appl. Phys. A 117, 19–23 (2014)

    Article  ADS  Google Scholar 

  73. S. Park, R.S. Ruoff, Chemical methods for the production of graphenes. Nat. Nanotech. 4, 217–224 (2009)

    Article  ADS  Google Scholar 

  74. M.A. Buccheri, D. D’Angelo, S. Scalese et al.: Modification of graphene oxide by laser irradiation: a new route to enhance antibacterial activity. Nanotechnology 27, 245704 (2016) (12pp)

    Google Scholar 

  75. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972)

    Article  ADS  Google Scholar 

  76. A. Fuerte, M.D. Hernandez-Alonso, A.J. Maira et al.: Visible light-activated nanosized doped-TiO2 photocatalysts. Chem. Comm. 24, 2718−2719 (2001)

    Google Scholar 

  77. Z.W. Seh, S.H. Liu, M. Low et al., Au-TiO2 photocatalysts with strong localization of plasmonic near-fields for efficient visible-light hydrogen generation. Adv. Mater. 24, 2310–2314 (2012)

    Article  Google Scholar 

  78. R. Fiorenza, M. Bellardita, L. Palmisano et al., A comparison between photocatalytic and catalytic oxidation of 2-propanol over Au/TiO2–CeO2 catalysts. J. Mol. Catal. A Chem. 415, 56–64 (2016)

    Article  Google Scholar 

  79. R. Fiorenza, M. Bellardita, L. D’Urso et al.: Au/TiO2-CeO2 catalysts for photocatalytic water splitting and VOCs oxidation reactions. Catalysts 6, 121 (2016) (13pp)

    Google Scholar 

  80. R. Asahi, T. Morikawa, T. Ohwaki et al., Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269–271 (2001)

    Article  Google Scholar 

  81. R. Fiorenza, M. Bellardita, S. Scirè, L. Palmisano, Photocatalytic H2 production over inverse opal TiO2 catalysts. Catal. Today 321–322, 113–119 (2019)

    Google Scholar 

  82. J.B. Varley, A. Janotti, C.G. Van de Walle, Mechanism of visible-light photocatalysis in nitrogen-doped TiO2. Adv. Mater. 23, 2343–2347 (2011)

    Article  Google Scholar 

  83. S. Filice, D. D’Angelo, S.F. Spanò et al., Modification of graphene oxide and graphene oxide–TiO2 solutions by pulsed laser irradiation for dye removal from water. Mater. Sci. Semicond. Proc. 42, 50–53 (2015)

    Article  Google Scholar 

  84. Y. Shiraishi, H. Sakamoto, Y. Sugano et al., Pt–Cu bimetallic alloy nanoparticles supported on anatase TiO2: highly active catalysts for aerobic oxidation driven by visible light. ACS Nano 7, 9287–9297 (2013)

    Article  Google Scholar 

  85. D. Zhang, J. Liu, P. Li et al., Recent advances in surfactant-free, surface-charged, and defect-rich catalysts developed by laser ablation and processing in liquids. ChemNanoMat 3, 512–533 (2017)

    Article  Google Scholar 

  86. L.H. Li, Z.X. Deng, J.X. Xiao, G.W. Yang, A metallic metal oxide (Ti5O9)-metal oxide (TiO2) nanocomposite as the heterojunction to enhance visible-light photocatalytic activity. Nanotechnology 26 (2015)

    Google Scholar 

  87. J. Yan, P. Liu, C. Ma et al., Plasmonic near-touching titanium oxide nanoparticles to realize solar energy harvesting and effective local heating. Nanoscale 8, 8826–8838 (2016)

    Article  ADS  Google Scholar 

  88. X. Chen, D. Zhao, K. Liu et al., Laser-modified black titanium oxide nanospheres and their photocatalytic activities under visible light. ACS Appl. Mater. Interfaces 7, 16070–16077 (2015)

    Article  Google Scholar 

  89. S. Filice, G. Compagnini, R. Fiorenza et al., Laser processing of TiO2 colloids for an enhanced photocatalytic water splitting activity. J. Colloid Interface Sci. 489, 131–137 (2017)

    Article  ADS  Google Scholar 

  90. G. Zhu, Y. Shan, T. Lin et al., Hydrogenated blue titania with high solar absorption and greatly improved photocatalysis. Nanoscale 8, 4705–4712 (2016)

    Article  ADS  Google Scholar 

  91. J. Tian, X. Hu, H. Yang et al., High yield production of reduced TiO2 with enhanced photocatalytic activity. Appl. Surf. Sci. 360, 738–743 (2016)

    Article  ADS  Google Scholar 

  92. A.L. Linsebigler, G. Lu, J.T. Yates, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 95, 735–758 (1995)

    Article  Google Scholar 

  93. W.-N. Zhao, Z.-P. Liu, Mechanism and active site of photocatalytic water splitting on titania in aqueous surroundings. Chem. Sci. 5, 2256–2264 (2014)

    Article  Google Scholar 

  94. R. Fiorenza, S. Sciré, L. D’Urso et al., Efficient H2 production by photocatalytic water splitting under UV or solar light over variously modified TiO2-based catalysts. Int. J. Hydrogen Energy 44, 14796–14807 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Compagnini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Compagnini, G. et al. (2020). Laser-Induced Synthesis and Processing of Nanoparticles in the Liquid Phase for Biosensing and Catalysis. In: Hu, A. (eds) Laser Micro-Nano-Manufacturing and 3D Microprinting. Springer Series in Materials Science, vol 309. Springer, Cham. https://doi.org/10.1007/978-3-030-59313-1_4

Download citation

Publish with us

Policies and ethics