Skip to main content

An Analysis and Evaluation of Open Source Capture the Flag Platforms as Cybersecurity e-Learning Tools

  • Conference paper
  • First Online:
Information Security Education. Information Security in Action (WISE 2020)

Abstract

Capture the Flag (CTF) challenges are typically used for hosting competitions related to cybersecurity. Like any other event, CTF competitions vary in terms of context, topics and purpose and integrate various features and characteristics. This article presents the results of a comparative evaluation between 4 popular open source CTF platforms, regarding their use for learning purposes. We conducted this evaluation as part of the user-centered design process by demonstrating the platforms to the potential participants, in order to collect descriptive insights regarding the features of each platform. The results of this evaluation demonstrated that participants approved the high importance of the selected features and their significance for enhancing the learning process. This study may be useful for organizers of learning events to select the right platform, as well as for future researchers to upgrade and to extend any particular platform according to their needs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/facebook/fbctf.

  2. 2.

    https://github.com/CTFd/CTFd.

  3. 3.

    https://github.com/Nakiami/mellivora.

  4. 4.

    https://github.com/moloch--/RootTheBox/.

  5. 5.

    https://www.hackthebox.eu.

  6. 6.

    https://ctf365.com.

  7. 7.

    https://shellterlabs.com.

  8. 8.

    https://csaw.engineering.nyu.edu.

  9. 9.

    https://github.com/CTFd/plugins.

References

  1. Hendrix, M., Al-Sherbaz, A., Victoria, B.: Game based cyber security training: are serious games suitable for cyber security training? Int. J. Serious Games 3(1), 53–61 (2016). https://doi.org/10.17083/ijsg.v3i1.107

  2. Matias, P., Barbosa, P., Cardoso, T.N., Campos, D.M., Aranha, D.F.: NIZKCTF: a noninteractive zero-knowledge capture-the-flag platform. IEEE Secur. Priv. 16(6), 42–51 (2018). https://doi.org/10.1109/MSEC.2018.2875324

    Article  Google Scholar 

  3. Bowen, B.M., Devarajan, R., Stolfo, S.: Measuring the human factor of cyber security. In: 2011 IEEE International Conference on Technologies for Homeland Security (HST), pp. 230–235. IEEE, Boston (2011). https://doi.org/10.1109/THS.2011.6107876

  4. Davis, A., Leek, T., Zhivich, M., Gwinnup, K., Leonard, W.: The fun and future of CTF. In: Proceedings of the 23rd USENIX Summit on Gaming, Games, and Gamification in Security Education 2014 (3GSE 14), San Diego. USENIX (2014)

    Google Scholar 

  5. McDaniel, L., Talvi, E., Hay, B.: Capture the flag as cyber security introduction. In: 2016 49th Hawaii International Conference on System Sciences 2016 (HICSS), Koloa, USA, pp. 5479–5486. IEEE (2016). https://doi.org/10.1109/HICSS.2016.677

  6. Mansurov, A.: A CTF-based approach in information security education: an extracurricular activity in teaching students at Altai State University. Russia. Mod. Appl. Sci. 10(11), 159–166 (2016). https://doi.org/10.5539/mas.v10n11p159

    Article  Google Scholar 

  7. Cherinka, R., Prezzama, J.: Innovative approaches to building comprehensive talent pipelines: helping to grow a strong and diverse professional workforce. Syst. Cybern. Inform. 13(6), 82–86 (2015)

    Google Scholar 

  8. Boopathi, K., Sreejith, S., Bithin, A.: Learning cyber security through gamification. Indian J. Sci. Technol. 8(7), 642–649 (2015)

    Article  Google Scholar 

  9. Burket, J., Chapman, P., Becker, T., Ganas, C., Brumley, D.: Automatic problem generation for capture-the-flag competitions. In: Proceedings of the 24th USENIX Summit on Gaming, Games, and Gamification in Security Education 2015 (3GSE 15), Washington. USENIX (2015)

    Google Scholar 

  10. Chapman, P., Burket, J., Brumley, D.: PicoCTF: a game-based computer security competition for high school students. In: Proceedings of the 23rd USENIX Summit on Gaming, Games, and Gamification in Security Education 2014 (3GSE 14), San Diego. USENIX (2014)

    Google Scholar 

  11. Schreuders, Z.C., Butterfield, E.: Gamification for teaching and learning computer security in higher education. In: Proceedings of USENIX Workshop on Advances in Security Education 2016 (ASE 16), Austin, USA (2016)

    Google Scholar 

  12. Conti, G., Babbitt, T., Nelson, J.: Hacking competitions and their untapped potential for security education. IEEE Secur. Priv. 9(3), 56–59 (2011). https://doi.org/10.1109/MSP.2011.51

    Article  Google Scholar 

  13. Eagle, C., Clark, J.L.: Capture-the-flag: learning computer security under fire. In: Proceedings of the 6th Workshop on Education in Computer Security 2004 (WECS), pp. 17–21. Naval Postgraduate School, Monterey, CA (2004)

    Google Scholar 

  14. Antonioli, D., Ghaeini, H.R., Adepu, S., Ochoa, M., Tippenhauer.: Gamifying education and research on ICS security: design, implementation and results of S3. In: Proceedings of the 3rd Workshop on Cyber-Physical Systems Security and PrivaCy 2017, Dallas, Texas, USA, pp. 93–102. ACM (2017)

    Google Scholar 

  15. Leune, K., Petrilli Jr., S.J.: Using capture-the-flag to enhance the effectiveness of cybersecurity education. In: Proceedings of the 18th Annual Conference on Information Technology Education 2017, Rochester, New York, USA, pp. 47–52. ACM (2017). https://doi.org/10.1145/3125659.3125686

  16. Noor Azam, M.H., Beuran, R.: Usability evaluation of open source and online capture the flag platforms. Japan Advanced Institute of Science and Technology (JAIST), Technical report, IS-RR-2018-001 (2018)

    Google Scholar 

  17. Raman, R., Sunny, S., Pavithran, V., Achuthan, K.: Framework for evaluating Capture The Flag (CTF) security competitions. In: The Proceedings of the International Conference for Convergence for Technology 2014 (I2CT 2014), Pune, India, pp. 136–140. IEEE (2014). https://doi.org/10.1109/I2CT.2014.7092098

  18. Chung, K., Cohen, J.: Learning obstacles in the capture the flag model. In: Proceedings of the 23rd USENIX Summit on Gaming, Games, and Gamification in Security Education (3GSE 2014), San Diego, CA. USENIX (2014)

    Google Scholar 

  19. Chung, K.: Live lesson: lowering the barriers to capture the flag administration and participation. In: Proceedings of USENIX Workshop on Advances in Security Education (ASE 2017), Vancouver, BC, Canada (2017)

    Google Scholar 

  20. Ahmad, R., Hussain, A., Baharom, F.: Software sustainability characteristic for software development towards long living software. WSEAS Trans. Bus. Econ. 15, 55–72 (2018)

    Google Scholar 

  21. Kucek, S., Leitner, M.: An empirical survey of functions and configurations of open source capture the Flag (CTF) environments. J. Netw. Comput. Appl., 102470 (2019). https://doi.org/10.1016/j.jnca.2019.102470

  22. Martínez-Torres, M.R., Toral Marín, S.L., Garcia, F.B., Vazquez, S.G., Oliva, M.A., Torres, T.: A technological acceptance of e-learning tools used in practical and laboratory teaching, according to the European higher education area. Behav. Inf. Technol. 27(6), 495–505 (2008). https://doi.org/10.1080/01449290600958965

    Article  Google Scholar 

  23. Khan, J.A., Rehman, I.U., Khan, Y.H., Khan, I.J., Rashid, S.: Comparison of requirement prioritization techniques to find best prioritization technique. Int. J. Mod. Educ. Comput. Sci. 7(11), 53–59 (2015). https://doi.org/10.5815/ijmecs.2015.11.06

    Article  Google Scholar 

  24. Piras, L., et al.: DEFeND architecture: a privacy by design platform for GDPR compliance. In: Gritzalis, S., Weippl, E.R., Katsikas, S.K., Anderst-Kotsis, G., Tjoa, A.M., Khalil, I. (eds.) TrustBus 2019. LNCS, vol. 11711, pp. 78–93. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-27813-7_6

    Chapter  Google Scholar 

Download references

Acknowledgements

This project has received funding from the GSRT for the European Union’s Horizon 2020 research and innovation programme DEFeND under grant agreement No 787068.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stylianos Karagiannis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Karagiannis, S., Maragkos-Belmpas, E., Magkos, E. (2020). An Analysis and Evaluation of Open Source Capture the Flag Platforms as Cybersecurity e-Learning Tools. In: Drevin, L., Von Solms, S., Theocharidou, M. (eds) Information Security Education. Information Security in Action. WISE 2020. IFIP Advances in Information and Communication Technology, vol 579. Springer, Cham. https://doi.org/10.1007/978-3-030-59291-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59291-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59290-5

  • Online ISBN: 978-3-030-59291-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics