Skip to main content

Differential Effects of Trait Empathy on Functional Network Centrality

  • Conference paper
  • First Online:
Brain Informatics (BI 2020)

Abstract

Previous research has shown that empathy, a fundamental component of human social functioning, is engaged when listening to music. Neuroimaging studies of empathy processing in music have, however, been limited. fMRI analysis methods based on graph theory have recently gained popularity as they are capable of illustrating global patterns of functional connectivity, which could be very useful in studying complex traits such as empathy. The current study examines the role of trait empathy, including cognitive and affective facets, on whole-brain functional network centrality in 36 participants listening to music in a naturalistic setting. Voxel-wise eigenvector centrality mapping was calculated as it provides us with an understanding of globally distributed centres of coordination associated with the processing of empathy. Partial correlation between Eigenvector centrality and measures of empathy showed that cognitive empathy is associated with higher centrality in the sensorimotor regions responsible for motor mimicry while affective empathy showed higher centrality in regions related to auditory affect processing. Results are discussed in relation to various theoretical models of empathy and music cognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adelstein, J., et al.: Personality is reflected in the brain’s intrinsic functional architecture. PLoS ONE (11), 6 (2011). https://doi.org/10.1371/journal.pone.0027633

  2. Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10(3), 186–198 (2009). https://doi.org/10.1038/nrn2575

    Article  Google Scholar 

  3. Calderoni, S., Bellani, M., Hardan, A., Muratori, F., Brambilla, P.: Basal ganglia and restricted and repetitive behaviours in autism spectrum disorders: current status and future perspectives. Epidemiol. Psychiatr. Sci. 23(3), 235–238 (2014). https://doi.org/10.1017/S2045796014000171

    Article  Google Scholar 

  4. Cox, C., Uddin, L., Martino, A., Castellanos, F., Milham, M., Kelly, C.: The balance between feeling and knowing: affective and cognitive empathy are reflected in the brain’s intrinsic functional dynamics. Soc. Cogn. Affect. Neurosci. 7(6), 727–737 (2012). https://doi.org/10.1093/scan/nsr051

    Article  Google Scholar 

  5. Cross, I.: Music and communication in music psychology. Psychol. Music 42(6), 809–819 (2014). https://doi.org/10.1177/0305735614543968

    Article  Google Scholar 

  6. Davis, M.: A multidimensional approach to individual differences in empathy. JSAS Catalog Sel. Doc. Psychol. 10, 85 (1980)

    Google Scholar 

  7. De Waal, F., Preston, S.: Mammalian empathy: behavioural manifestations and neural basis. Nat. Rev. Neurosci. 18(8), 498–509 (2017). https://doi.org/10.1038/nrn.2017.72

    Article  Google Scholar 

  8. Decety, J., Moriguchi, Y.: The empathic brain and its dysfunction in psychiatric populations: implications for intervention across different clinical conditions. BioPsychoSocial Med. 1(1) (2007). https://doi.org/10.1186/1751-0759-1-22

  9. Decety, J., Ickes, W. (eds.): The Social Neuroscience of Empathy. MIT Press, Cambridge (2009)

    Google Scholar 

  10. Fan, Y., Duncan, N., De Greck, M., Northoff, G.: Is there a core neural network in empathy? An fMRI based quantitative meta-analysis. Neurosci. Biobehav. Rev. 35(3), 903–911 (2011). https://doi.org/10.1016/j.neubiorev.2010.10.00910.1016/j.neubiorev.2010.10.009

    Article  Google Scholar 

  11. García-García, I., Jurado, M., Garolera, M.: Functional network centrality in obesity: a resting-state and task fMRI study. Psychiatr. Res. 233(3), 331–338 (2015). https://doi.org/10.1016/j.pscychresns.2015.05.017

    Article  Google Scholar 

  12. Goldman, A.I.: Understanding empathy: its features and effects. In: Two Routes to Empathy: Insights from Cognitive Neuroscience, chap., pp. 31–44. Oxford University Press (2011)

    Google Scholar 

  13. Gratton, C., Laumann, T., Nielsen, A.: Functional brain networks are dominated by stable group and individual factors, not cognitive or daily variation. Neuron 98(2), 439–452 (2018). https://doi.org/10.1016/j.neuron.2018.03.035

    Article  Google Scholar 

  14. Hage, P., Harary, F.: Eccentricity and centrality in networks. Soc. Netw. 17(1), 248–257 (1995). https://doi.org/10.1016/0378-8733(94)10.1016/0378-8733(94)

    Article  Google Scholar 

  15. John, O., Naumann, L., Soto, C.: Paradigm shift to the integrative Big Five trait taxonomy: history, measurement, and conceptual issues, pp. 114–158. Guilford, New York (2008)

    Google Scholar 

  16. Juslin, P., Västfjäll, D.: Emotional responses to music: the need to consider underlying mechanisms. Behav. Brain Sci. 31(5), 559–575 (2008). https://doi.org/10.1017/S0140525X08005293

    Article  Google Scholar 

  17. Kim, H., Han, S.: Does personal distress enhance empathic interaction or block it? Personality Individ. Differ. 124, 77–83 (2018). https://doi.org/10.1016/j.paid.2017.12.005

    Article  Google Scholar 

  18. Koschützki, D., Lehmann, K.A., Peeters, L., Richter, S., Tenfelde-Podehl, D., Zlotowski, O.: Centrality indices. In: Brandes, U., Erlebach, T. (eds.) Network Analysis. LNCS, vol. 3418, pp. 16–61. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31955-9_3

    Chapter  Google Scholar 

  19. Kringelbach, M.L., Rolls, E.T.: The functional neuroanatomy of the human orbitofrontal cortex: evidence from neuroimaging and neuropsychology. Prog. Neurobiol. 72(5), 341–372 (2004). https://doi.org/10.1016/j.pneurobio.2004.03.006

    Article  Google Scholar 

  20. Krämer, U.M., Mohammadi, B., Doñamayor, N., Samii, A., Münte, T.F.: Emotional and cognitive aspects of empathy and their relation to social cognition-an fMRI-study. Brain Res. 1311, 110–120 (2010). https://doi.org/10.1016/j.brainres.2009.11.043

    Article  Google Scholar 

  21. Leman, M.: Embodied Music Cognition and Mediation Technology. MIT Press, Cambridge (2008)

    Google Scholar 

  22. Liu, X., Hairston, J., Schrier, M., Fan, J.: Common and distinct networks underlying reward valence and processing stages: a meta-analysis of functional neuroimaging studies. Neurosci. Biobehav. Rev. 35(5), 1219–1236 (2011). https://doi.org/10.1016/j.neubiorev.2010.12.012

    Article  Google Scholar 

  23. Neuhaus, C.: Methods in neuromusicology: principles, trends, examples and the pros and cons. In: Schneider, A. (ed.) Studies in Musical Acoustics and Psychoacoustics. CRSM, vol. 4, pp. 341–374. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-47292-8_11

    Chapter  Google Scholar 

  24. Panksepp, J.: Cross-species affective neuroscience decoding of the primal affective experiences of humans and related animals. PLoS ONE 6(9) (2011). https://doi.org/10.1371/journal.pone.0021236

  25. Sachs, M., Habibi, A., Damasio, A., Kaplan, J.: Dynamic intersubject neural synchronization reflects affective responses to sad music. NeuroImage (2019). https://doi.org/10.1016/j.neuroimage.2019.116512

    Article  Google Scholar 

  26. Shamay-Tsoory, S.G., Aharon-Peretz, J., Perry, D.: Two systems for empathy: a double dissociation between emotional and cognitive empathy in inferior frontal gyrus versus ventromedial prefrontal lesions. Brain 132(3), 617–627 (2009). https://doi.org/10.1093/brain/awn279

    Article  Google Scholar 

  27. da Silva, R.A.P., Viana, M.P., Costa, L.: Predicting epidemic outbreak from individual features of the spreaders. J. Stat. Mech. Theory Exp. 2012(07), P07005 (2012). https://doi.org/10.1088/1742-5468/2012/07/p07005

    Article  MATH  Google Scholar 

  28. Singer, T., Lamm, C.: The social neuroscience of empathy. Ann. N. Y. Acad. Sci. 1156 (2009). https://doi.org/10.5167/uzh-25655

  29. Sprengelmeyer, R., Rausch, M., Eysel, U.T., Przuntek, H.: Neural structures associated with recognition of facial expressions of basic emotions. Proc. R. Soc. Lond. B Biol. Sci. 265(1409), 1927–1931 (1998). https://doi.org/10.1098/rspb.1998.0522

    Article  Google Scholar 

  30. Stoodley, C., Schmahmann, J.: Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex 46(7), 831–844 (2010). https://doi.org/10.1016/j.cortex.2009.11.008

    Article  Google Scholar 

  31. Toiviainen, P., Burunat, I., Brattico, E., Vuust, P., Alluri, V.: The chronnectome of musical beat. NeuroImage (2019). https://doi.org/10.1016/j.neuroimage.2019.116191

    Article  Google Scholar 

  32. Tomasello, M.: The Cultural Origins of Human Cognition (2019). https://doi.org/10.2307/j.ctvjsf4jc.3

  33. Vytal, K., Hamann, S.: Neuroimaging support for discrete neural correlates of basic emotions: a voxel-based meta-analysis. J. Cogn. Neurosci. 22(12), 2864–2885 (2010). https://doi.org/10.1162/jocn.2009.21366. pMID: 19929758

    Article  Google Scholar 

  34. Wallmark, Z., Deblieck, C., Iacoboni, M.: Neurophysiological effects of trait empathy in music listening. Front. Behav. Neurosci. 12, 66 (2018). https://doi.org/10.3389/fnbeh.2018.00066

    Article  Google Scholar 

  35. Yeh, Z.T., Tsai, C.F.: Impairment on theory of mind and empathy in patients with stroke. J. Neuropsychiatry Clin. Neurosci. 68(8), 612–620 (2014). https://doi.org/10.1111/pcn.12173

    Article  Google Scholar 

  36. Zahavi, D.: Beyond empathy: phenomenological approaches to intersubjectivity. J. Conscious. Stud. 8(5–7), 151–167 (2001)

    Google Scholar 

  37. Zuo, X.N., et al.: Network centrality in the human functional connectome. Cereb. Cortex 22(8), 1862–1875 (2011). https://doi.org/10.1093/cercor/bhr269

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishnu Moorthigari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Moorthigari, V., Carlson, E., Toiviainen, P., Brattico, E., Alluri, V. (2020). Differential Effects of Trait Empathy on Functional Network Centrality. In: Mahmud, M., Vassanelli, S., Kaiser, M.S., Zhong, N. (eds) Brain Informatics. BI 2020. Lecture Notes in Computer Science(), vol 12241. Springer, Cham. https://doi.org/10.1007/978-3-030-59277-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59277-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59276-9

  • Online ISBN: 978-3-030-59277-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics