Skip to main content

The Complexity of the Partition Coloring Problem

  • Conference paper
  • First Online:
Theory and Applications of Models of Computation (TAMC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12337))

  • 600 Accesses

Abstract

Given a simple undirected graph \(G=(V,E)\) and a partition of the vertex set V into p parts, the Partition Coloring Problem asks if we can select one vertex from each part of the partition such that the chromatic number of the subgraph induced on the p selected vertices is bounded by k. PCP is a generalized problem of the classical Vertex Coloring Problem and has applications in many areas, such as scheduling and encoding, etc. In this paper, we show the complexity status of the Partition Coloring Problem with three parameters: the number of colors, the number of parts of the partition, and the maximum size of each part of the partition. Furthermore, we give a new exact algorithm for this problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The notation \(O^*\) is a modified big-O notation that suppresses all polynomially bounded factors.

References

  1. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets möbius: fast subset convolution. In: Proceedings of the Thirty-Ninth Annual ACM symposium on Theory of computing, pp. 67–74. ACM (2007)

    Google Scholar 

  2. Cauchy, A.L.B.: Cours d’analyse de l’École Royale Polytechnique. Debure (1821)

    Google Scholar 

  3. Damaschke, P.: Parameterized mixed graph coloring. J. Comb. Optim. 38(2), 362–374 (2019)

    Article  MathSciNet  Google Scholar 

  4. Demange, M., Ekim, T., Ries, B., Tanasescu, C.: On some applications of the selective graph coloring problem. Eur. J. Oper. Res. 240(2), 307–314 (2015)

    Article  MathSciNet  Google Scholar 

  5. Demange, M., Monnot, J., Pop, P., Ries, B.: On the complexity of the selective graph coloring problem in some special classes of graphs. Theoret. Comput. Sci. 540, 89–102 (2014)

    Article  MathSciNet  Google Scholar 

  6. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness II: on completeness for W[1]. Theoret. Comput. Sci. 141(1–2), 109–131 (1995)

    Article  MathSciNet  Google Scholar 

  7. Ekim, T., de Werra, D.: On split-coloring problems. J. Comb. Optim. 10(3), 211–225 (2005). https://doi.org/10.1007/s10878-005-4103-7

    Article  MathSciNet  MATH  Google Scholar 

  8. Frota, Y., Maculan, N., Noronha, T.F., Ribeiro, C.C.: A branch-and-cut algorithm for partition coloring. Networks 55(3), 194–204 (2010)

    MathSciNet  MATH  Google Scholar 

  9. Furini, F., Malaguti, E., Santini, A.: An exact algorithm for the partition coloring problem. Comput. Oper. Res. 92, 170–181 (2018)

    Article  MathSciNet  Google Scholar 

  10. Galinier, P., Hao, J.K.: Hybrid evolutionary algorithms for graph coloring. J. Comb. Optim. 3(4), 379–397 (1999). https://doi.org/10.1023/A:1009823419804

    Article  MathSciNet  MATH  Google Scholar 

  11. Gamst, A.: Some lower bounds for a class of frequency assignment problems. IEEE Trans. Veh. Technol. 35(1), 8–14 (1986)

    Article  Google Scholar 

  12. Glass, C.A., Prügel-Bennett, A.: Genetic algorithm for graph coloring: exploration of Galinier and Hao’s algorithm. J. Comb. Optim. 7(3), 229–236 (2003). https://doi.org/10.1023/A:1027312403532

    Article  MathSciNet  MATH  Google Scholar 

  13. Hansen, P., Kuplinsky, J., de Werra, D.: Mixed graph colorings. Math. Methods Oper. Res. 45(1), 145–160 (1997). https://doi.org/10.1007/BF01194253

    Article  MathSciNet  MATH  Google Scholar 

  14. Holyer, I.: The NP-completeness of edge-coloring. SIAM J. Comput. 10(4), 718–720 (1981)

    Article  MathSciNet  Google Scholar 

  15. Hoshino, E.A., Frota, Y.A., De Souza, C.C.: A branch-and-price approach for the partition coloring problem. Oper. Res. Lett. 39(2), 132–137 (2011)

    Article  MathSciNet  Google Scholar 

  16. Jin, Y., Hamiez, J.-P., Hao, J.-K.: Algorithms for the minimum sum coloring problem: a review. Artif. Intell. Rev. 47(3), 367–394 (2016). https://doi.org/10.1007/s10462-016-9485-7

    Article  Google Scholar 

  17. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W., Bohlinger, J.D. (eds) Complexity of Computer Computations. The IBM Research Symposia Series, pp. 85–103 (1972). Springer, Boston. https://doi.org/10.1007/978-1-4684-2001-2_9

  18. Krom, M.R.: The decision problem for a class of first-order formulas in which all disjunctions are binary. Math. Logic Q. 13(1–2), 15–20 (1967)

    Article  MathSciNet  Google Scholar 

  19. Kubicka, E., Schwenk, A.J.: An introduction to chromatic sums. In: Proceedings of the 17th Conference on ACM Annual Computer Science Conference, pp. 39–45. ACM (1989)

    Google Scholar 

  20. Li, G., Simha, R.: The partition coloring problem and its application to wavelength routing and assignment. In: Proceedings of the First Workshop on Optical Networks, p. 1. Citeseer (2000)

    Google Scholar 

  21. Lin, W., Xiao, M., Zhou, Y., Guo, Z.: Computing lower bounds for minimum sum coloring and optimum cost chromatic partition. Comput. Oper. Res. 109, 263–272 (2019)

    Article  MathSciNet  Google Scholar 

  22. Lucarelli, G., Milis, I., Paschos, V.T.: On the max-weight edge coloring problem. J. Comb. Optim. 20(4), 429–442 (2010). https://doi.org/10.1007/s10878-009-9223-z

    Article  MathSciNet  MATH  Google Scholar 

  23. Pop, P.C., Hu, B., Raidl, G.R.: A memetic algorithm with two distinct solution representations for the partition graph coloring problem. In: Moreno-Diaz, R., Pichler, F., Quesada-Arencibia, A. (eds.) Computer Aided Systems Theory - EUROCAST 2013. EUROCAST 2013. Lecture Notes in Computer Science, vol. 8111, pp. 219–226. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-53856-8_28

  24. Zhou, X., Nishizeki, T.: Algorithm for the cost edge-coloring of trees. J. Comb. Optim. 8(1), 97–108 (2004). https://doi.org/10.1023/B:JOCO.0000021940.40066.0c

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenyu Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guo, Z., Xiao, M., Zhou, Y. (2020). The Complexity of the Partition Coloring Problem. In: Chen, J., Feng, Q., Xu, J. (eds) Theory and Applications of Models of Computation. TAMC 2020. Lecture Notes in Computer Science(), vol 12337. Springer, Cham. https://doi.org/10.1007/978-3-030-59267-7_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59267-7_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59266-0

  • Online ISBN: 978-3-030-59267-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics