Skip to main content

Neurological Complications of the COVID-19 Pandemic: What Have We Got So Far?

  • Chapter
  • First Online:
Clinical, Biological and Molecular Aspects of COVID-19

Abstract

The recently emerged coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal agent of COVID-19, is the newest threat to human health. It has already infected more than 54.5 million people worldwide, currently leading to more than 1.3 million deaths. Although it causes a mild flu-like disease in most patients, lethality may increase to more than 20% in elderly subjects, especially in those with comorbidities, like hypertension, diabetes, or lung and cardiac disease, and the mechanisms are still elusive. Common symptoms at the onset of illness are fever, cough, myalgia or fatigue, headache, and diarrhea or constipation. Interestingly, respiratory viruses have also placed themselves as relevant agents for central nervous system (CNS) pathologies. Conversely, SARS-CoV-2 has already been detected in the cerebrospinal fluid. Here, we discuss several clinical features related to CNS infection during COVID-19. Patients may progress from headaches and migraines to encephalitis, stroke, and seizures with leptomeningitis. However, the pathway used by the virus to reach the brain is still unknown. It may infect the olfactory bulb by retrograde neuronal transportation from olfactory epithelium, or it could be transported by the blood. Either way, neurological complications of COVID-19 add greatly to the complex pathophysiology of the disease. Neurological signs and symptoms must alert physicians not only to worst outcomes but also to future possible degenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACE2:

angiotensin-converting enzyme 2

ADEM:

acute disseminated encephalomyelitis

CD147:

CD147-spike protein

CNS:

central nervous system

COVID-19:

coronavirus disease 2019

CoVs:

coronaviruses

CSF:

cerebrospinal fluid

CTSB:

cathepsin B

CTSL:

cathepsin L

DPP4:

dipeptidyl peptidase 4

ECG:

electrocardiogram

GBC:

globose basal cells

GBS:

Guillain-Barré syndrome

HBC:

horizontal basal cells

HCoV-OC43:

human coronavirus OC43

hMPV:

human metapneumovirus

hRSV:

human respiratory syncytial virus

MERS:

Middle East respiratory syndrome

MHV:

murine hepatitis virus

NIHSS:

National Institutes of Health Stroke Scale

OSN:

olfactory sensory neurons

PNS:

peripheral nervous system

RBD:

receptor-binding domain

SARS:

severe acute respiratory syndrome

SARS-CoV:

severe acute respiratory syndrome coronavirus

SARS-CoV-2:

severe acute respiratory syndrome coronavirus 2

SP or S protein:

spike proteins

STD:

smell and/or taste disorders

References

  1. Bohmwald K, Gálvez N, Ríos M, Kalergis A (2018) Neurologic alterations due to respiratory virus infections. Front Cell Neurosci 12:386. https://doi.org/10.3389/fncel.2018.00386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Guan W, Ni Z, Hu Y, Liang W, Ou C, He J et al (2020) Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 382(18):1708–1720

    Article  CAS  PubMed  Google Scholar 

  3. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y et al (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395(10223):497–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Baig A, Khaleeq A, Ali U, Syeda H (2020) Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host–virus interaction, and proposed neurotropic mechanisms. ACS Chem Neurosci 11(7):995–998

    Article  CAS  PubMed  Google Scholar 

  5. Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y et al (2020) Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis. pii: ciaa248. https://doi.org/10.1093/cid/ciaa248. [Epub ahead of print]

  6. Sun D, Li H, Lu X, Xiao H, Ren J, Zhang F et al (2020) Clinical features of severe pediatric patients with coronavirus disease 2019 in Wuhan: a single center’s observational study. World J Pediatr. https://doi.org/10.1007/s12519-020-00354-4. [Epub ahead of print]

  7. Pinto B, Oliveira A, Singh Y, Jimenez L, Goncalves A, Ogava R et al (2020) ACE2 expression is increased in the lungs of patients with comorbidities associated with severe COVID-19. medRxiv. https://doi.org/10.1101/2020.03.21.20040261

  8. Morichi S, Kawashima H, Ioi H, Ushio M, Yamanaka G, Kashiwagi Y et al (2009) Cerebrospinal fluid NOx (nitrite/nitrate) in RSV-infected children with CNS symptoms. J Infect 59(4):299–301

    Article  PubMed  Google Scholar 

  9. Schildgen O, Glatzel T, Geikowski T, Scheibner B, Simon A, Bindl L et al (2005) Human metapneumovirus RNA in encephalitis patient. Emerg Infect Dis 11(3):467–470

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S et al (2020) SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181(2):271–280.e8. https://doi.org/10.1016/j.cell.2020.02.052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Raj V, Mou H, Smits S, Dekkers D, Müller M, Dijkman R et al (2013) Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 495(7440):251–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang K, Chen W, Zhou Y, Lian J, Zhang Z, Du P et al (2020) SARS-CoV-2 invades host cells via a novel route: CD147-spike protein. medRxiv. https://doi.org/10.1101/2020.03.14.988345

  13. Ziegler CGK, Allon SJ, Nyquist SK, Mbano IM, Miao VN, Tzouanas C et al (2020) SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell (In Press, Journal Pre-proof). https://doi.org/10.1016/j.cell.2020.04.035

  14. Li M, Li L, Zhang Y, Wang X (2020) Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infect Dis Poverty 9(1):45. https://doi.org/10.1186/s40249-020-00662-x

    Article  PubMed  PubMed Central  Google Scholar 

  15. Leung W, To K, Chan P, Chan H, Wu A, Lee N et al (2003) Enteric involvement of severe acute respiratory syndrome-associated coronavirus infection. Gastroenterology 125(4):1011–1017

    Article  PubMed  Google Scholar 

  16. Dimitrov D (2003) The secret life of ACE2 as a receptor for the SARS virus. Cell 115(6):652–653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gu J, Korteweg C (2007) Pathology and pathogenesis of severe acute respiratory syndrome. Am J Pathol 170(4):1136–1147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Oudit G, Kassiri Z, Jiang C, Liu P, Poutanen S, Penninger J et al (2009) SARS-coronavirus modulation of myocardial ACE2 expression and inflammation in patients with SARS. Eur J Clin Investig 39(7):618–625

    Article  CAS  Google Scholar 

  19. Ding Y, He L, Zhang Q, Huang Z, Che X, Hou J et al (2004) Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways. J Pathol 203(2):622–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xu J, Zhong S, Liu J, Li L, Li Y, Wu X et al (2005) Detection of severe acute respiratory syndrome coronavirus in the brain: potential role of the chemokine mig in pathogenesis. Clin Infect Dis 41(8):1089–1096

    Article  CAS  PubMed  Google Scholar 

  21. Gu J, Gong E, Zhang B, Zheng J, Gao Z, Zhong Y et al (2005) Multiple organ infection and the pathogenesis of SARS. J Exp Med 202(3):415–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dubé M, Le Coupanec A, Wong A, Rini J, Desforges M, Talbot P (2018) Axonal transport enables neuron-to-neuron propagation of human coronavirus OC43. J Virol 92(17):pii: e00404–pii: e00418. https://doi.org/10.1128/JVI.00404-18

    Article  Google Scholar 

  23. Bleau C, Filliol A, Samson M, Lamontagne L (2015) Brain invasion by mouse hepatitis virus depends on impairment of tight junctions and beta interferon production in brain microvascular endothelial cells. J Virol 89(19):9896–9908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Netland J, Meyerholz DK, Moore S, Cassell M, Perlman S (2008) Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J Virol 82(15):7264–7275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Perlman S, Evans G, Afifi A (1990) Effect of olfactory bulb ablation on spread of a neurotropic coronavirus into the mouse brain. J Exp Med 172(4):1127–1132

    Article  CAS  PubMed  Google Scholar 

  26. Li W, Zhang C, Sui J, Kuhn J, Moore M, Luo S et al (2005) Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. EMBO J 24(8):1634–1643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hulswit R, de Haan C, Bosch B (2016) Coronavirus spike protein and tropism changes. Adv Virus Res 96:29–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Brann D, Tsukahara T, Weinreb C, Logan D, Datta S (2020) Non-neural expression of SARS-CoV-2 entry genes in the olfactory epithelium suggests mechanisms underlying anosmia in COVID-19 patients. medRxiv. https://doi.org/10.1101/2020.03.25.009084

  29. Choi R, Goldstein BJ (2018) Olfactory epithelium: cells, clinical disorders, and insights from an adult stem cell niche. Laryngoscope Investig Otolaryngol 3(1):35–42

    Article  PubMed  PubMed Central  Google Scholar 

  30. Fletcher RB, Das D, Gadye L, Street KN, Baudhuin A, Wagner A et al (2017) Deconstructing olfactory stem cell trajectories at single-cell resolution. Cell Stem Cell 20(6):817–830.e8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Durrant DM, Ghosh S, Klein RS (2016) The olfactory bulb: an immunosensory effector organ during neurotropic viral infections. ACS Chem Neurosci 7(4):464–469

    Article  CAS  PubMed  Google Scholar 

  32. Doty RL (2019) Systemic diseases and disorders. Handb Clin Neurol 164:361–387

    Article  PubMed  Google Scholar 

  33. Wen P, Rao X, Xu L, Zhang Z, Jia F, He X et al (2019) Cortical organization of centrifugal afferents to the olfactory bulb: mono- and trans-synaptic tracing with recombinant neurotropic viral tracers. Neurosci Bull 35(4):709–723

    Article  PubMed  PubMed Central  Google Scholar 

  34. Arbour N, Day R, Newcombe J, Talbot P (2000) Neuroinvasion by human respiratory coronaviruses. J Virol 74(19):8913–8921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mao L, Wang M, Chen S, He Q, Chang J, Hong C et al (2020) Neurological manifestations of hospitalized patients with COVID-19 in Wuhan, China: a retrospective case series study. JAMA Neurol. https://doi.org/10.1001/jamaneurol.2020.1127. [Epub ahead of print]

  36. Chen T, Wu D, Chen H, Yan W, Yang D, Chen G et al (2020) Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study [published correction appears in BMJ. 2020 Mar 31;368:m1295]. BMJ 368:m1091. https://doi.org/10.1136/bmj.m1091

    Article  PubMed  PubMed Central  Google Scholar 

  37. CDC COVID-19 Response Team (2020) Coronavirus disease 2019 in children – United States, February 12–April 2, 2020. MMWR Morb Mortal Wkly Rep 69(14):422–426

    Article  PubMed Central  Google Scholar 

  38. Chacón-Aguilar R, Osorio-Cámara J, Sanjurjo-Jimenez I, González-González C, López-Carnero J, Pérez-Moneo-Agapito B (2020) COVID-19: fever syndrome and neurological symptoms in a neonate. An Pediatr (Engl Ed) 27. https://doi.org/10.1016/j.anpede.2020.04.001. [Epub ahead of print]

  39. Hwang C (2006) Olfactory neuropathy in severe acute respiratory syndrome: report of A case. Acta Neurol Taiwanica 15(1):26–28

    Google Scholar 

  40. Stone J (2020) There’s an unexpected loss of smell and taste in coronavirus patients Forbes. https://www.forbes.com/sites/judystone/2020/03/20/theres-an-unexpected-loss-of-smell-and-taste-in-coronavirus-patients/#40567ff45101

  41. Hopkins C, Kumar N (2020) Loss of sense of smell as a marker of COVID-19 infection. London: Ear, nose, and throat surgery professional membership in the United Kingdom (ENT UK). https://www.entuk.org/covid-19

  42. Lechien J, Chiesa-Estomba C, De Siati D, Horoi M, LeBon S, Rodriguez A et al (2020) Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. Eur Arch Otorhinolaryngol. https://doi.org/10.1007/s00405-020-05965-1. [Epub ahead of print]

  43. Beltrán-Corbellini Á, Chico-García J, Martínez-Poles J, Rodríguez-Jorge F, Natera-Villalba E, Gómez-Corral J et al Acute-onset smell and taste disorders in the context of Covid-19: a pilot multicenter PCR-based case-control study. Eur J Neurol. https://doi.org/10.1111/ene.14273. [Epub ahead of print]

  44. Haehner A, Draf J, Draeger S, de With K, Hummel T (2020) Predictive value of sudden olfactory loss in the diagnosis of COVID-19. medRxiv. https://doi.org/10.1101/2020.04.27.20081356

  45. Zhou L, Zhang M, Gao J, Wang J (2020) Sars-Cov-2: underestimated damage to nervous system. Travel Med Infect Dis:101642. https://doi.org/10.1016/j.tmaid.2020.101642. [Epub ahead of print]

  46. Filatov A, Sharma P, Hindi F, Espinosa P (2020) Neurological complications of coronavirus disease (COVID-19): encephalopathy. Cureus 12(3):e7352. https://doi.org/10.7759/cureus.7352

    Article  PubMed  PubMed Central  Google Scholar 

  47. Moriguchi T, Harii N, Goto J, Harada D, Sugawara H, Takamino J et al (2020) A first case of meningitis/encephalitis associated with SARS-Coronavirus-2. Int J Infect Dis 94:55–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ann Yeh E, Collins A, Cohen M, Duffner P, Faden H (2003) Detection of coronavirus in the central nervous system of a child with acute disseminated encephalomyelitis. Pediatrics 113(1):e73–e76

    Article  Google Scholar 

  49. Moldofsky H, Patcai J (2011) Chronic widespread musculoskeletal pain, fatigue, depression and disordered sleep in chronic post-SARS syndrome; a case-controlled study. BMC Neurol 11:37. https://doi.org/10.1186/1471-2377-11-37

    Article  PubMed  PubMed Central  Google Scholar 

  50. Jacomy H, Fragoso G, Almazan G, Mushynski W, Talbot P (2006) Human coronavirus OC43 infection induces chronic encephalitis leading to disabilities in BALB/C mice. Virology 349(2):335–346

    Article  CAS  PubMed  Google Scholar 

  51. Hosking M, Lane T (2010) The pathogenesis of murine coronavirus infection of the central nervous system. Crit Rev Immunol 30(2):119–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li Y, Wang M, Zhou Y, Chang J, Xian Y, Mao L et al (2020) Acute cerebrovascular disease following COVID-19: a single center, retrospective, observational study. SSRN Electron J. https://doi.org/10.2139/ssrn.3550025

  53. Oxley T, Mocco J, Majidi S, Kellner C, Shoirah H, Singh I et al (2020) Large-vessel stroke as a presenting feature of Covid-19 in the young. N Engl J Med 382(20):e60. https://doi.org/10.1056/NEJMc2009787

    Article  PubMed  Google Scholar 

  54. Zhao H, Shen D, Zhou H, Liu J, Chen S (2020) Guillain-Barré syndrome associated with SARS-CoV-2 infection: causality or coincidence? Lancet Neurol 19(5):383–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Siu R, Bukhari W, Todd A, Gunn W, Huang QS, Timmings P (2016) Acute Zika infection with concurrent onset of Guillain-Barre syndrome. Neurology 87:1623–1624

    Article  PubMed  Google Scholar 

  56. Gutiérrez-Ortiz C, Méndez A, Rodrigo-Rey S, San Pedro-Murillo E, Bermejo-Guerrero L, Gordo-Mañas R et al (2020) Miller Fisher Syndrome and polyneuritis cranialis in COVID-19. Neurology. pii: 10.1212/WNL.0000000000009619. https://doi.org/10.1212/WNL.0000000000009619. [Epub ahead of print]

  57. Ramos Ttito A, TipismanaBarbaran M, Najar Trujillo N, Escalaya Advincula A, Icumina Arevalo K, Moscol Ato G et al (2017) Takotsubo cardiomyopathy as a sequel of severe Dysautonomia from Guillain-Barré syndrome. J Neurol Sci 381:919–920

    Article  Google Scholar 

  58. Meyer P, Degrauwe S, Delden C, Ghadri J, Templin C (2020) Typical takotsubo syndrome triggered by SARS-CoV-2 infection. Eur Heart J. pii: ehaa306. https://doi.org/10.1093/eurheartj/ehaa306. [Epub ahead of print]

  59. Martins R, Barbarot N, Coquerel N, Baruteau A, Kolev I, Vérin M (2010) Takotsubo cardiomyopathy associated with Guillain–Barré syndrome: a differential diagnosis from dysautonomia not to be missed. J Neurol Sci 291(1–2):100–102

    Article  PubMed  Google Scholar 

  60. Nunes M, Carlini C, Marinovic D, Neto F, Fiori H, Scotta M et al (2016) Microcephaly and Zika virus: a clinical and epidemiological analysis of the current outbreak in Brazil. J Pediatr 92(3):230–240

    Article  Google Scholar 

  61. Cugola F, Fernandes I, Russo F, Freitas B, Dias J, Guimarães K et al (2016) The Brazilian Zika virus strain causes birth defects in experimental models. Nature 534(7606):267–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Figueiredo C, Barros-Aragão F, Neris R, Frost P, Soares C, Souza I et al (2019) Zika virus replicates in adult human brain tissue and impairs synapses and memory in mice. Nat Commun 10(1):3890. https://doi.org/10.1038/s41467-019-11866-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lutters B, Foley P, Koehler P (2018) The centennial lesson of encephalitis lethargica. Neurology 90(12):563–567

    Article  PubMed  Google Scholar 

Download references

Conflicts of Interest/Competing Interests

The authors report no disclosures.

Availability of Data and Material

We utilized publicly available data.

Funding

JPSP is funded by FAPESP grants #2017/26170–0 and 2017/22504–1 and CNPq (301287/2016–3). No other targeted funding is reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Pierre Schatzmann Peron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bandeira, I.P., Schlindwein, M.A.M., Breis, L.C., Peron, J.P.S., Gonçalves, M.V.M. (2021). Neurological Complications of the COVID-19 Pandemic: What Have We Got So Far?. In: Guest, P.C. (eds) Clinical, Biological and Molecular Aspects of COVID-19. Advances in Experimental Medicine and Biology(), vol 1321. Springer, Cham. https://doi.org/10.1007/978-3-030-59261-5_2

Download citation

Publish with us

Policies and ethics