Skip to main content

Does SARS-CoV-2 Threaten Male Fertility?

  • Chapter
  • First Online:
Clinical, Biological and Molecular Aspects of COVID-19

Abstract

In the continuing COVID-19 pandemic, one of the most important concerns in reproductive health is the issue of male fertility of recovered patients. In this study, we discuss the potential mechanisms that justify the possible impact of COVID-19 on male fertility. The main point of entry of SARS-CoV-2 into the host cells appears to be through the viral spike protein which permits entry into cells via the angiotensin-converting enzyme 2 (ACE2 receptor). In human testes, ACE2 is enriched in Sertoli and Leydig cells and spermatogonia. Also, it seems that there is a mild or severe cytokine storm in patients with severe COVID-19, and such changes may affect fertility. It should also be mentioned that the orchitis caused by the SARS-CoV-2 virus may have an important impact on fertility. Prolonged and high fever may lead to changes in testicular temperature and destroy germ cells. In general, there is little evidence for a definite conclusion, but there are facts that suggest that COVID-19 may affect male fertility. It is prudent for men of reproductive age who have recovered from COVID-19 to be evaluated for the presence of the virus in semen and fertility-related items. There is an urgent need to conduct quality studies on, in particular, the long-term effects of COVID-19 on the fertility of recovered males.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. WHO Coronavirus disease 2019 (COVID-19) situation report – 161. June 29, 2020. https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200629-covid-19-sitrep-161.pdf?sfvrsn=74fde64e_2

  2. Zheng YY, Ma YT, Zhang JY, Xie X (2020) COVID-19 and the cardiovascular system. Nat Rev Cardiol 17(5):259–260

    Article  CAS  PubMed  Google Scholar 

  3. Cheng Y, Luo R, Wang K, Zhang M, Wang Z, Dong L et al (2020) Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int 97(5):829–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gu J, Han B, Wang J (2020) COVID-19: gastrointestinal manifestations and potential fecal–oral transmission. Gastroenterology 158(6):1518–1519

    Article  CAS  PubMed  Google Scholar 

  5. Yang M, Chen S, Huang B, Zhong JM, Su H, Chen YJ et al (2020) Pathological findings in the testes of COVID-19 patients: clinical implications. Eur Urol Focus May 31;S2405-4569(20)30144-9. https://doi.org/10.1016/j.euf.2020.05.009. Online ahead of print

  6. Wu Y, Xu X, Chen Z, Duan J, Hashimoto K, Yang L et al (2020) Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain Behav Immun 87:18–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Salam AP, Horby PW (2017) The breadth of viruses in human semen. Emerg Infect Dis 23(11):1922–1924

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kurscheidt FA, Mesquita CS, Damke GM, Damke E, Analine RA, Suehiro TT et al (2019) Persistence and clinical relevance of Zika virus in the male genital tract. Nat Rev Urol 16(4):211–230

    Article  PubMed  Google Scholar 

  9. Xu J, Qi L, Chi X, Yang J, Wei X, Gong E et al (2006) Orchitis: a complication of severe acute respiratory syndrome (SARS). Biol Reprod 74(2):410–416

    Article  CAS  PubMed  Google Scholar 

  10. Zhao J, Zhou G, Sun Y, Wang S, Yang J, Meng E et al (2003) Clinical pathology and pathogenesis of severe acute respiratory syndrome. Zhonghua Shi Yan He Ln Chuang Bing Du Xue Za Zhi 17(3):217–221

    Google Scholar 

  11. Corona G, Baldi E, Isidori A, Paoli D, Pallotti F, De Santis L et al (2020) SARS-CoV-2 infection, male fertility and sperm cryopreservation: a position statement of the Italian Society of Andrology and Sexual Medicine (SIAMS)(Società Italiana di Andrologia e Medicina della Sessualità). J Endocrinol Investg May 27;1–5. https://doi.org/10.1007/s40618-020-01290-w. Online ahead of print

  12. Lukassen S, Chua RL, Trefzer T, Kahn NC, Schneider MA, Muley T et al (2020) SARS-CoV-2 receptor ACE 2 and TMPRSS 2 are primarily expressed in bronchial transient secretory cells. EMBO J 39(10):e105114. https://doi.org/10.15252/embj.20105114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fehr AR, Perlman S (2015) Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol 1282:1–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S et al (2020) SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181(2):271–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D (2020) Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 181(2):281–292.e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N et al (2000) A novel angiotensin-converting enzyme–related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9. Circ Res 87(5):e1–e9

    Article  CAS  PubMed  Google Scholar 

  17. Santos RAS, Sampaio WO, Alzamora AC, Motta-Santos D, Alenina N, Bader M et al (2018) The ACE2/angiotensin-(1–7)/MAS axis of the renin-angiotensin system: focus on angiotensin-(1–7). Physiol Rev 98(1):505–553

    Article  CAS  PubMed  Google Scholar 

  18. Visniauskas B, Arita DY, Rosales CB, Feroz MA, Lefante J, Thethi TK et al (2019) The association between plasma soluble prorenin receptor and renin activity points toward renin angiotensin system activation and cardiovascular complications in women with type-2 diabetes. Hypertension 74(Suppl_1). https://doi.org/10.1161/hyp.74.suppl_1.073

  19. Akishita M, Yamada H, Dzau VJ, Horiuchi M (1999) Increased vasoconstrictor response of the mouse lacking angiotensin II type 2 receptor. Biochem Biophys Res Commun 261(2):345–349

    Article  CAS  PubMed  Google Scholar 

  20. Ibrahim MM (2006) RAS inhibition in hypertension. J Hum Hypertens 20(2):101–108

    Article  CAS  PubMed  Google Scholar 

  21. Leung PS (2007) The physiology of a local renin–angiotensin system in the pancreas. J Physiol Pharmacol 580(1):31–37

    CAS  Google Scholar 

  22. Herr D, Bekes I, Wulff C (2013) Local renin-angiotensin system in the reproductive system. Front Endocrinol 4:150. https://doi.org/10.3389/fendo.2013.00150

    Article  Google Scholar 

  23. Leung P, Sernia C (2003) The renin-angiotensin system and male reproduction: new functions for old hormones. J Mol Endocrinol 30(3):263–270

    Article  CAS  PubMed  Google Scholar 

  24. Li W, Zhang C, Sui J, Kuhn JH, Moore MJ, Luo S et al (2005) Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. EMBO J 24(8):1634–1643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lambert DW, Yarski M, Warner FJ, Thornhill P, Parkin ET, Smith AI et al (2005) Tumor necrosis factor-α convertase (ADAM17) mediates regulated ectodomain shedding of the severe-acute respiratory syndrome-coronavirus (SARS-CoV) receptor, angiotensin-converting enzyme-2 (ACE2). J Biol Chem 280(34):30113–30119

    Article  CAS  PubMed  Google Scholar 

  26. Xiao L, Sakagami H, Miwa N (2020) ACE2: the key molecule for understanding the pathophysiology of severe and critical conditions of COVID-19: demon or angel? Viruses 12(5):491. https://doi.org/10.3390/v12050491

    Article  CAS  PubMed Central  Google Scholar 

  27. Hikmet F, Mear L, Uhlen M, Lindskog C (2020) The protein expression profile of ACE2 in human tissues. BioRxiv. https://doi.org/10.1101/2020.03.31.016048

  28. Feng Y, Yue X, Xia H, Bindom SM, Hickman PJ, Filipeanu CM et al (2008) Angiotensin-converting enzyme 2 overexpression in the subfornical organ prevents the angiotensin II–mediated pressor and drinking responses and is associated with angiotensin II type 1 receptor downregulation. Circ Res 102(6):729–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Crackower MA, Sarao R, Oudit GY, Yagil C, Kozieradzki I, Scanga SE et al (2002) Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature 417(6891):822–828

    Article  CAS  PubMed  Google Scholar 

  30. Fan C, Li K, Ding Y, Lu WL, Wang J (2020) ACE2 expression in kidney and testis may cause kidney and testis damage after 2019-nCoV infection. MedRxiv. https://doi.org/10.1101/2020.03.31.016048

  31. Douglas GC, O’Bryan MK, Hedger MP, Lee DK, Yarski MA, Smith AI et al (2004) The novel angiotensin-converting enzyme (ACE) homolog, ACE2, is selectively expressed by adult Leydig cells of the testis. Endocrinology 145(10):4703–4711

    Article  CAS  PubMed  Google Scholar 

  32. Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G, Turner AJ (2000) A human homolog of angiotensin-converting enzyme cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem 275(43):33238–33243

    Article  CAS  PubMed  Google Scholar 

  33. Alenina N, Baranova T, Smirnow E, Bader M, Lippoldt A, Patkin E et al (2002) Cell type-specific expression of the Mas proto-oncogene in testis. J Histochem Cytochem 50(5):691–695

    Article  CAS  PubMed  Google Scholar 

  34. Xu P, Santos RA, Bader M, Alenina N (2007) Alterations in gene expression in the testis of angiotensin-(1–7)-receptor Mas-deficient mice. Regul Pept 138(2–3):51–55

    Article  CAS  PubMed  Google Scholar 

  35. Wang Z, Xu X (2020) scRNA-seq profiling of human testes reveals the presence of the ACE2 receptor, a target for SARS-CoV-2 infection in spermatogonia, Leydig and Sertoli cells. Cell 9(4):920. https://doi.org/10.3390/cells9040920

    Article  CAS  Google Scholar 

  36. Reis AB, Araújo FC, Pereira VM, Dos Reis AM, Santos RA, Reis FM (2010) Angiotensin (1–7) and its receptor Mas are expressed in the human testis: implications for male infertility. J Mol Histol 41(1):75–80

    Article  CAS  PubMed  Google Scholar 

  37. Zhang C, Wu Z, Li JW, Zhao H, Wang GQ (2020) The cytokine release syndrome (CRS) of severe COVID-19 and Interleukin-6 receptor (IL-6R) antagonist Tocilizumab may be the key to reduce the mortality. Int J Antimicrob Agents 55(5):105954. https://doi.org/10.1016/j.ijantimicag.2020.105954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pérez CV, Theas MS, Jacobo PV, Jarazo-Dietrich S, Guazzone VA, Lustig L (2013) Dual role of immune cells in the testis: protective or pathogenic for germ cells? Spermatogenesis 3(1):e23870. https://doi.org/10.4161/spmg.23870

    Article  PubMed  PubMed Central  Google Scholar 

  39. Pérez CV, Sobarzo CM, Jacobo PV, Pellizzari EH, Cigorraga SB, Denduchis B et al (2012) Loss of occludin expression and impairment of blood-testis barrier permeability in rats with autoimmune orchitis: effect of interleukin 6 on Sertoli cell tight junctions. Biol Reprod 87(5):122. https://doi.org/10.1095/biolreprod

  40. Loveland KL, Klein B, Pueschl D, Indumathy S, Bergmann M, Loveland BE et al (2017) Cytokines in male fertility and reproductive pathologies: immunoregulation and beyond. Front Endocrinol 8:307. https://doi.org/10.3389/fendo.2017.00307

    Article  Google Scholar 

  41. Novel Coronavirus Pneumonia Emergency Response Epidemiology Team (2020) Vital surveillances: the epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19)—China. Zhonghua Liu Xing Bing Xue Za Zhi 41(2):145–151

    Google Scholar 

  42. Xu J, Xu Z, Jiang Y, Qian X, Huang Y (2000) Cryptorchidism induces mouse testicular germ cell apoptosis and changes in bcl-2 and bax protein expression. J Environ Pathol Toxicol Oncol 19(1/2):25–34

    CAS  PubMed  Google Scholar 

  43. Gao HB, Tong MH, Hu YQ, Guo QS, Ge R, Hardy MP (2002) Glucocorticoid induces apoptosis in rat leydig cells. Endocrinology 143(1):130–138

    Article  CAS  PubMed  Google Scholar 

  44. Drobnis EZ, Nangia AK (2017) Immunosuppressants and male reproduction. Impacts of medications on male fertility. Adv Exp Med Biol 1034:179–210

    Article  PubMed  Google Scholar 

  45. Pan F, Xiao X, Guo J, Song Y, Li H, Patel DP et al (2020) No evidence of severe acute respiratory syndrome–coronavirus 2 in semen of males recovering from coronavirus disease 2019. Fertil Steril 113(6):1135–1139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li D, Jin M, Bao P, Zhao W, Zhang S (2020) Clinical characteristics and results of semen tests among men with coronavirus disease 2019. JAMA Netw Open 3(5):e208292. https://doi.org/10.1001/jamanetworkopen.2020.8292

    Article  PubMed  PubMed Central  Google Scholar 

  47. Holtmann N, Edimiris P, Andree M, Doehmen C, Baston-Buest D, Adams O et al (2020) Assessment of SARS-CoV-2 in human semen-a cohort study. Fertil Steril May 29. https://doi.org/10.1016/j.fertnstert.2020.05.028:1-13. [Epub ahead of print]

  48. Song C, Wang Y, Li W, Hu B, Chen G, Xia P et al (2020) Absence of 2019 novel coronavirus in semen and testes of COVID-19 patients. Biol Reprod 103(1):4–6

    Article  PubMed  Google Scholar 

  49. Ma L, Xie W, Li D, Shi L, Mao Y, Xiong Y et al (2020) Effect of SARS-CoV-2 infection upon male gonadal function: a single center-based study. MedRxiv. https://doi.org/10.1101/2020.03.21.20037267

Download references

Acknowledgments

Thanks to guidance and advice from the Clinical Research Development Unit of Baqiyatallah Hospital.

Conflict of Interest

No conflicts of interest are declared by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amirhossein Sahebkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vahedian-Azimi, A., Karimi, L., Makvandi, S., Jamialahmadi, T., Sahebkar, A. (2021). Does SARS-CoV-2 Threaten Male Fertility?. In: Guest, P.C. (eds) Clinical, Biological and Molecular Aspects of COVID-19. Advances in Experimental Medicine and Biology(), vol 1321. Springer, Cham. https://doi.org/10.1007/978-3-030-59261-5_12

Download citation

Publish with us

Policies and ethics