Skip to main content

SARS-CoV-2 (COVID-19): Beginning to Understand a New Virus

  • Chapter
  • First Online:
Clinical, Biological and Molecular Aspects of COVID-19

Part of the book series: Advances in Experimental Medicine and Biology ((PMISB,volume 1321))

Abstract

Within the last two decades, several members of the Coronaviridae family demonstrated epidemic potential. In late 2019, an unnamed genetic relative, later named SARS-CoV-2 (COVID-19), erupted in the highly populous neighborhoods of Wuhan, China. Unchecked, COVID-19 spread rapidly among interconnected communities and related households before containment measures could be enacted. At present, the mortality rate of COVID-19 infection worldwide is 6.6%. In order to mitigate the number of infections, restrictions or recommendations on the number of people that can gather in a given area have been employed by governments worldwide. For governments to confidently lift these restrictions as well as counter a potential secondary wave of infections, alternative medications and diagnostic strategies against COVID-19 are urgently required. This review has focused on these issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J et al (2020) A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 382:727–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y et al (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395(10223):497–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pachetti M, Marini B, Benedetti F, Giudici F, Mauro E, Storici P et al (2020) Emerging SARS-CoV-2 mutation hot spots include a novel RNA-dependent-RNA polymerase variant. J Transl Med 18(1):179. https://doi.org/10.1186/s12967-020-02344-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yao H, Lu X, Chen Q, Xu K, Chen Y, Cheng L et al (2020) Patient-derived mutations impact pathogenicity of SARS-CoV-2. medRxiv. https://doi.org/10.1101/2020.04.14.20060160

  5. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H et al (2020) Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395(10224):565–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wu A, Peng Y, Huang B, Ding X, Wang X, Niu P et al (2020) Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe 27(3):325–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W et al (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579(7798):270–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. York A (2020) Host–microbiome interactions lost during flight. Nat Rev Microbiol 18(3):122. https://doi.org/10.1038/s41579-020-0328-9

    Article  CAS  PubMed  Google Scholar 

  9. Yang Y, Lu Q, Liu M, Wang Y, Zhang A, Jalali N et al (2020) Epidemiological and clinical features of the 2019 novel coronavirus outbreak in China. medRxiv. https://doi.org/10.1101/2020.02.10.20021675

  10. Dong L, Tian J, He S, Zhu C, Wang J, Liu C et al (2020) Possible vertical transmission of SARS-CoV-2 from an infected mother to her newborn. JAMA. https://doi.org/10.1001/jama.2020.4621. [Epub ahead of print]

  11. Chan JF, Yuan S, Kok KH, To KK, Chu H, Yang J et al (2020) A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet 395(10223):514–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hao P, Zhong W, Song S, Fan S, Li X (2020) Is SARS-CoV-2 originated from laboratory? A rebuttal to the claim of formation via laboratory recombination. Emerg Microbe Infect 9(1):545–547

    Article  CAS  Google Scholar 

  13. Li W, Shi Z, Yu M, Ren W, Smith C, Epstein JH et al (2005) Bats are natural reservoirs of SARS-like coronaviruses. Science 310(5748):676–679

    Article  CAS  PubMed  Google Scholar 

  14. Liu P, Chen W, Chen JP (2019) Viral metagenomics revealed sendai virus and coronavirus infection of Malayan pangolins (Manis javanica). Viruses 11(11):pii: E979. https://doi.org/10.3390/v11110979

    Article  CAS  Google Scholar 

  15. Zhang T, Wu Q, Zhang Z (2020) Probable pangolin origin of SARS-CoV-2 associated with the COVID-19 outbreak. Curr Biol 30(7):1346–1351.e2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Chen Y, Liu Q, Guo D (2020) Emerging coronaviruses: genome structure, replication, and pathogenesis. J Med Virol 92(4):418–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. an Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson BN et al (2020) Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med 382(16):1564–1567

    Article  PubMed  Google Scholar 

  18. Xie J, Zhu Y (2020) Association between ambient temperature and COVID-19 infection in 122 cities from China. Sci Total Environ 724:138201. https://doi.org/10.1016/j.scitotenv.2020.138201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R (2020) COVID-19 infection: origin, transmission, and characteristics of human coronaviruses. J Adv Res 24:91–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dong N, Yang X, Ye L, Chen K, Chan EWC, Yang M et al (2020) Genomic and protein structure modelling analysis depicts the origin and infectivity of 2019-nCoV, a new coronavirus which caused a pneumonia outbreak in Wuhan, China. bioRxiv. https://doi.org/10.1101/2020.01.20.913368

  21. Xu X, Chen P, Wang J, Feng J, Zhou H, Li X et al (2020) Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci China Life Sci 63(3):457–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rabi FA, Al Zoubi MS, Kasasbeh GA, Salameh DM, Al-Nasser AD (2020) SARS-CoV-2 and coronavirus disease 2019: what we know so far. Pathogens 9(3):pii: E231. https://doi.org/10.3390/pathogens9030231

    Article  CAS  Google Scholar 

  23. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y et al (2020) Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 395(10223):507–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen H, Guo J, Wang C, Luo F, Yu X, Zhang W et al (2020) Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet 395(10226):809–815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Duan YN, Qin J (2020) Pre- and posttreatment chest CT findings: 2019 novel coronavirus (2019-nCoV) pneumonia. Radiology 295(1):21. https://doi.org/10.1148/radiol.2020200323

    Article  PubMed  Google Scholar 

  26. Lee KS (2020) Pneumonia associated with 2019 novel coronavirus: can computed tomographic findings help predict the prognosis of the disease? Korean J Radiol 21(3):257–258

    Article  PubMed  PubMed Central  Google Scholar 

  27. Franquet T (2011) Imaging of pulmonary viral pneumonia. Radiology 260(1):18–39

    Article  PubMed  Google Scholar 

  28. Hansell DM, Bankier AA, MacMahon H, McLoud TC, Müller NL, Remy J (2008) Fleischner society: glossary of terms for thoracic imaging. Radiology 246(3):697–722

    Article  PubMed  Google Scholar 

  29. Malainou C, Herold S (2019) Influenza. Internist (Berl) 60(11):1127–1135

    Article  CAS  Google Scholar 

  30. Schlaberg R, Queen K, Simmon K, Tardif K, Stockmann C, Flygare S et al (2017) Viral pathogen detection by metagenomics and pan-viral group polymerase chain reaction in children with pneumonia lacking identifiable etiology. J Infect Dis 215(9):1407–1415

    Article  CAS  PubMed  Google Scholar 

  31. Kistler A, Avila PC, Rouskin S, Wang D, Ward T, Yagi S et al (2007) Pan-viral screening of respiratory tract infections in adults with and without asthma reveals unexpected human coronavirus and human rhinovirus diversity. J Infect Dis 196(6):817–825

    Article  CAS  PubMed  Google Scholar 

  32. To KK, Hung IF, Chan JF, Yuen KY (2013) From SARS coronavirus to novel animal and human coronaviruses. J Thorac Dis 5(Suppl 2):S103–S108

    PubMed  PubMed Central  Google Scholar 

  33. Wu Z, McGoogan JM (2020) Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72314 cases from the Chinese Center for Disease Control and Prevention. JAMA. https://doi.org/10.1001/jama.2020.2648. [Epub ahead of print]

  34. Peiris JS, Yuen KY, Osterhaus AD, Stöhr K (2003) The severe acute respiratory syndrome. N Engl J Med 349(25):2431–2441

    Article  CAS  PubMed  Google Scholar 

  35. de Wit E, van Doremalen N, Falzarano D, Munster VJ (2016) SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol 14(8):523–534

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA (2012) Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 367(19):1814–1820

    Article  CAS  PubMed  Google Scholar 

  37. Hui DS, Azhar EI, Kim YJ, Memish ZA, Oh MD, Zumla A (2018) Middle East respiratory syndrome coronavirus: risk factors and determinants of primary, household, and nosocomial transmission. Lancet Infect Dis 18(8):e217–e227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chu DKW, Pan Y, Cheng SMS, Hui KPY, Krishnan P, Liu Y et al (2020) Molecular diagnosis of a novel coronavirus (2019-nCoV) causing an outbreak of pneumonia. Clin Chem 66(4):549–555

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zhao Y, Zhao Z, Wang Y, Zhou Y, Ma Y, Zuo W (2020) Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan 2019-nCov. bioRxiv. https://doi.org/10.1101/2020.01.26.919985

  40. Xu H, Zhong L, Deng J, Peng J, Dan H, Zeng X et al (2020) High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci 12(1):8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O et al (2020) Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367(6483):1260–1263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Park SE, Kim WJ, Park SW, Park JW, Lee N, Park CY et al (2013) High urinary ACE2 concentrations are associated with severity of glucose intolerance and microalbuminuria. Eur J Encrinol 168(2):203–210

    Article  CAS  Google Scholar 

  43. Jia HP, Look DC, Shi L, Hickey M, Pewe L, Netland J et al (2005) ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. J Virol 79(23):14614–14621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hoffmann M, Kleine-Weber H, Krüger N, Müller M, Drosten C, Pöhlmann S (2020) The novel coronavirus 2019 (2019-nCoV) uses the SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells. bioRxiv. https://doi.org/10.1101/2020.01.31.929042

  45. Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, van Goor H (2004) Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol 203(2):631–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zou X, Chen K, Zou J, Han P, Hao J, Han Z (2020) Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med 14(2):185–192

    Article  PubMed  Google Scholar 

  47. Yeo C, Kaushal S, Yeo D (2020) Enteric involvement of coronaviruses: is faecal-oral transmission of SARS-CoV-2 possible? Lancet Gastroenterol Hepatol 5(4):335–337

    Article  PubMed  PubMed Central  Google Scholar 

  48. Channappanavar R, Fehr AR, Zheng J, Wohlford-Lenane C, Abrahante JE, Mack M et al (2019) IFN-I response timing relative to virus replication determines MERS coronavirus infection outcomes. J Clin Invest 130:3625–3639

    Article  Google Scholar 

  49. Balachandran S, Roberts PC, Brown LE, Truong H, Pattnaik AK, Archer DR et al (2000) Essential role for the dsRNA-dependent protein kinase PKR in innate immunity to viral infection. Immunity 13(1):129–141

    Article  CAS  PubMed  Google Scholar 

  50. Breban R, Riou J, Fontanet A (2013) Interhuman transmissibility of Middle East respiratory syndrome coronavirus: estimation of pandemic risk. Lancet 382(9893):694–699

    Article  PubMed  PubMed Central  Google Scholar 

  51. Rockx B, Baas T, Zornetzer GA, Haagmans B, Sheahan T, Frieman M et al (2009) Early upregulation of acute respiratory distress syndrome-associated cytokines promotes lethal disease in an aged-mouse model of severe acute respiratory syndrome coronavirus infection. J Virol 83(14):7062–7074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Huang KJ, Su IJ, Theron M, Wu YC, Lai SK, Liu CC et al (2005) An interferon-gamma-related cytokine storm in SARS patients. J Med Virol 75(2):185–194

    Article  CAS  PubMed  Google Scholar 

  53. Decroly E, Imbert I, Coutard B, Bouvet M, Selisko B, Alvarez K et al (2008) Coronavirus nonstructural protein 16 is a cap-0 binding enzyme possessing (nucleoside-2′O)-methyltransferase activity. J Virol 82(16):8071–8084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Züst R, Cervantes-Barragan L, Habjan M, Maier R, Neuman BW, Ziebuhr J et al (2011) Ribose 2′-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nat Immunol 12(2):137–143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Sun L, Xing Y, Chen X, Zheng Y, Yang Y, Nichols DB et al (2012) Coronavirus papain-like proteases negatively regulate antiviral innate immune response through disruption of STING-mediated signaling. PLoS One 7(2):e30802. https://doi.org/10.1371/journal.pone.0030802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. van den Brink EN, Ter Meulen J, Cox F, Jongeneelen MA, Thijsse A, Throsby M et al (2005) Molecular and biological characterization of human monoclonal antibodies binding to the spike and nucleocapsid proteins of severe acute respiratory syndrome coronavirus. J Virol 79(3):1635–1644

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q (2020) Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 367(6485):1444–1448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. ter Meulen J, van den Brink EN, Poon LL, Marissen WE, Leung CS, Cox F et al (2006) Human monoclonal antibody combination against SARS coronavirus: synergy and coverage of escape mutants. PLoS Med 3(7):e237. https://doi.org/10.1371/journal.pmed.0030237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tian X, Li C, Huang A, Xia S, Lu S, Shi Z et al (2020) Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerg Microbe Infect 9(1):382–385

    Article  CAS  Google Scholar 

  60. Wang C, Li W, Drabek D, Okba NMA, van Haperen R, Osterhaus ADME et al (2020) A human monoclonal antibody blocking SARS-CoV-2 infection. bioRxiv. https://doi.org/10.1101/2020.03.11.987958

  61. Iwasaki A, Yang Y (2020) The potential danger of suboptimal antibody responses in COVID-19. Nat Rev Immunol. https://doi.org/10.1038/s41577-020-0321-6. [Epub ahead of print]

  62. Chen L, Liu W, Zhang Q, Xu K, Ye G, Wu W et al (2020) RNA based mNGS approach identifies a novel human coronavirus from two individual pneumonia cases in 2019 Wuhan outbreak. Emerge Microbes Infect 9(1):313–319

    Article  CAS  Google Scholar 

  63. Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DK et al (2020) Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill 25(3). https://doi.org/10.2807/1560-7917.ES.2020.25.3.2000045

  64. Brussel A, Brack K, Muth E, Zirwes R, Cheval J, Hebert C et al (2019) Use of a new RNA next generation sequencing approach for the specific detection of virus infection in cells. Biologicals 59:29–36

    Article  CAS  PubMed  Google Scholar 

  65. Habibzadeh P, Stoneman EK (2020) The novel coronavirus: a bird’s eye view. Int J Occup Environ Med 11(2):65–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Luk HKH, Li X, Fung J, Lau SKP, Woo PCY (2019) Molecular epidemiology, evolution and phylogeny of SARS coronavirus. Infect Genet Evol 71:21–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ramadan N, Shaib H (2019) Middle East respiratory syndrome coronavirus (MERS-CoV): a review. Germs 9(1):35–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Menachery VD, Yount BL Jr, Debbink K, Agnihothram S, Gralinski LE, Plante JA et al (2015) A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. Nat Med 21(12):1508–1513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Feldmann H (2018) Virus in semen and the risk of sexual transmission. N Engl J Med 378(15):1440–1441

    Article  PubMed  PubMed Central  Google Scholar 

  70. Mead PS, Hills SL, Brooks JT (2018) Zika virus as a sexually transmitted pathogen. Curr Opin Infect Dis 31(1):39–44

    Article  PubMed  Google Scholar 

  71. Fischer WA 2nd, Wohl DA (2016) Confronting Ebola as a sexually transmitted infection. Clin Infect Dis 62(10):1272–1276

    Article  PubMed  PubMed Central  Google Scholar 

  72. Chu KH, Tsang WK, Tang CS, Lam MF, Lai FM, To KF et al (2005) Acute renal impairment in coronavirus-associated severe acute respiratory syndrome. Kidney Int 67(2):698–705

    Article  PubMed  PubMed Central  Google Scholar 

  73. Li D, Jin M, Bao P, Zhao W, Zhang S (2020) Clinical characteristics and results of semen tests among men with coronavirus disease 2019. JAMA Netw Open 3(5):e208292–e208292

    Article  PubMed  PubMed Central  Google Scholar 

  74. Letko M, Munster V (2020) Functional assessment of cell entry and receptor usage for lineage B β-coronaviruses, including 2019-nCoV. medRxiv. https://doi.org/10.1101/2020.01.22.915660

  75. Tikellis C, Thomas MC (2012) Angiotensin-converting enzyme 2 (ACE2) is a key modulator of the renin angiotensin system in health and disease. Int J Pept 2012:256294. https://doi.org/10.1155/2012/256294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chappell MC (2010) Does ACE2 contribute to the development of hypertension? Hypertens Res 33(2):107–109

    Article  CAS  PubMed  Google Scholar 

  77. Chamsi-Pasha MA, Shao Z, Tang WH (2014) Angiotensin-converting enzyme 2 as a therapeutic target for heart failure. Curr Heart Fail Rep 11(1):58–63

    Article  CAS  PubMed  Google Scholar 

  78. Huentelman MJ, Grobe JL, Vazquez J, Stewart JM, Mecca AP, Katovich MJ et al (2005) Protection from angiotensin II-induced cardiac hypertrophy and fibrosis by systemic lentiviral delivery of ACE2 in rats. Exp Physiol 90(5):783–790

    Article  CAS  PubMed  Google Scholar 

  79. del Rio C, Malani PN (2020) 2019 novel coronavirus—important information for clinicians. JAMA. https://doi.org/10.1001/jama.2020.1490. [Epub ahead of print]

  80. Oudit GY, Kassiri Z, Patel MP, Chappell M, Butany J, Backx PH et al (2007) Angiotensin II-mediated oxidative stress and inflammation mediate the age-dependent cardiomyopathy in ACE2 null mice. Cardiovasc Res 75(1):29–39

    Article  CAS  PubMed  Google Scholar 

  81. Chappell MC, Marshall AC, Alzayadneh EM, Shaltout HA, Diz DI (2014) Update on the angiotensin converting enzyme 2-angiotensin (1-7)-MAS receptor axis: fetal programing, sex differences, and intracellular pathways. Front Endocrinol (Lausanne) 4:201. https://doi.org/10.3389/fendo.2013.00201

    Article  Google Scholar 

  82. Bahadoran A, Lee SH, Wang SM, Manikam R, Rajarajeswaran J, Raju CS et al (2016) Immune responses to influenza virus and its correlation to age and inherited factors. Front Microbiol 22(7):1841. https://doi.org/10.3389/fmicb.2016.01841

    Article  Google Scholar 

  83. Coates BM, Staricha KL, Koch CM, Cheng Y, Shumaker DK, Budinger GRS et al (2018) Inflammatory monocytes drive influenza a virus-mediated lung injury in juvenile mice. J Immunol 200(7):2391–2404

    Article  CAS  PubMed  Google Scholar 

  84. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J et al (2020) Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. JAMA. https://doi.org/10.1001/jama.2020.1585. [Epub ahead of print]

  85. Zhang H, Kang Z, Gong H, Xu D, Wang J, Li Z et al (2020) The digestive system is a potential route of 2019-nCov infection: a bioinformatics analysis based on single-cell transcriptomes. bioRxiv. https://doi.org/10.1101/2020.01.30.927806

  86. Chen Y, Guo Y, Pan Y, Zhao ZJ (2020) Structure analysis of the receptor binding of 2019-nCoV. Biochem Biophys Res Commun. pii: S0006-291X(20)30339-9. https://doi.org/10.1016/j.bbrc.2020.02.071. [Epub ahead of print]

  87. Hendaus MA, Alhammadi AH, Khalifa MS, Muneer E, Chandra P (2015) Risk of urinary tract infection in infants and children with acute bronchiolitis. Paediatr Child Health 20(5):e25–e29

    Article  PubMed  PubMed Central  Google Scholar 

  88. Leal MC, Pinheiro SV, Ferreira AJ, Santos RA, Bordoni LS, Alenina N et al (2009) The role of angiotensin-(1-7) receptor Mas in spermatogenesis in mice and rats. J Anat 214(5):736–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mate SE, Kugelman JR, Nyenswah TG, Ladner JT, Wiley MR, Cordier-Lassalle T et al (2015) Molecular evidence of sexual transmission of Ebola virus. N Engl J Med 373(25):2448–2454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Uyeki TM, Erickson BR, Brown S, McElroy AK, Cannon D, Gibbons A et al (2016) Ebola virus persistence in semen of male survivors. Clin Infect Dis 62(12):1552–1555

    Article  PubMed  Google Scholar 

  91. Deen GF, Broutet N, Xu W, Knust B, Sesay FR, McDonald SLR et al (2017) Ebola RNA persistence in semen of Ebola virus disease survivors – final report. N Engl J Med 377(15):1428–1437

    Google Scholar 

  92. Fischer WA, Brown J, Wohl DA, Loftis AJ, Tozay S, Reeves E et al (2017) Ebola virus ribonucleic acid detection in semen more than two years after resolution of acute Ebola virus infection. Open Forum Infect Dis 4(3):ofx155. https://doi.org/10.1093/ofid/ofx155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Morse JS, Lalonde T, Xu S, Liu WR (2020) Learning from the past: possible urgent prevention and treatment options for severe acute respiratory infections caused by 2019-nCoV. ChemBioChem 21(5):730–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Cyranoski D (2020) China is promoting coronavirus treatments based on unproven traditional medicines. Nature. https://doi.org/10.1038/d41586-020-01284-x. [Epub ahead of print]

  95. Gao J, Tian Z, Yang X (2020) Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends 14(1):72–73

    Article  CAS  PubMed  Google Scholar 

  96. Qaradakhi T, Gadanec LK, McSweeney KR, Tacey A, Apostolopoulos V, Levinger I et al (2020) The potential actions of angiotensin-converting enzyme II (ACE2) activator diminazene aceturate (DIZE) in various diseases. Clin Exp Pharmacol Physiol 47(5):751–758

    Article  CAS  PubMed  Google Scholar 

  97. Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M et al (2020) Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 30(3):269–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhang L, Liu Y (2020) Potential interventions for novel coronavirus in China: a systematic review. J Med Virol 92(5):479–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Caly L, Druce JD, Catton MG, Jans DA, Wagstaff KM (2020) The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antivir Res 178:104787. https://doi.org/10.1016/j.antiviral.2020.104787

    Article  CAS  PubMed  Google Scholar 

  100. Zhang R, Wang X, Ni L, Di X, Ma B, Niu S et al (2020) COVID-19: melatonin as a potential adjuvant treatment. Life Sci 250:117583. https://doi.org/10.1016/j.lfs.2020.117583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Fantini J, Di Scala C, Chahinian H, Yahi N (2020) Structural and molecular modelling studies reveal a new mechanism of action of chloroquine and hydroxychloroquine against SARS-CoV-2 infection. Int J Antimicrob Agents:105960. https://doi.org/10.1016/j.ijantimicag.2020.105960. [Epub ahead of print]

  102. Meo SA, Klonoff DC, Akram J (2020) Efficacy of chloroquine and hydroxychloroquine in the treatment of COVID-19. Eur Rev Med Pharmacol Sci 24(8):4539–4547

    CAS  PubMed  Google Scholar 

  103. Baron SA, Devaux C, Colson P, Raoult D, Rolain JM (2020) Teicoplanin: an alternative drug for the treatment of COVID-19? Int J Antimicrob Agents 55(4):105944. https://doi.org/10.1016/j.ijantimicag.2020.105944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Sheahan TP, Sims AC, Leist SR, Schäfer A, Won J, Brown AJ et al (2020) Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun 11(1):222. https://doi.org/10.1038/s41467-019-13940-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Grein J, Ohmagari N, Shin D, Diaz G, Asperges E, Castagna A et al (2020) Compassionate use of remdesivir for patients with severe Covid-19. N Engl J Med. https://doi.org/10.1056/NEJMoa2007016. [Epub ahead of print]

Download references

Conflicts of Interest

The author declares no competing financial interests.

Funding

This research was supported by a National Research Foundation of Korea (NRF) Grants awarded by the Korean government (MEST, No. NRF-2020R1A2B5B01002463 & NRF-2019R1G1A109740012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong Soo A. An .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Van Vo, G., Bagyinszky, E., Park, Y.S., Hulme, J., An, S.S.A. (2021). SARS-CoV-2 (COVID-19): Beginning to Understand a New Virus. In: Guest, P.C. (eds) Clinical, Biological and Molecular Aspects of COVID-19. Advances in Experimental Medicine and Biology(), vol 1321. Springer, Cham. https://doi.org/10.1007/978-3-030-59261-5_1

Download citation

Publish with us

Policies and ethics