Skip to main content

Abstract

Grass pea (Lathyrus sativus L.) is one of the primitive plant species domesticated for human food and animal feed. Like any other food legumes, it is rich in protein, healthy fats, vitamins and micronutrients. However, among pulses, this crop has a distinction of having homoarginine and β-ODAP (β-N-oxalyl-diamino-l-propionic acid). While the former makes it a functional healthy food, the later a toxic food. The presence of ODAP has caused much damage to its cultivation and consumption among growers and consumers as it is known to cause irreversible spastic paraparesis (paralysis) of lower limbs, if overconsumed continuously for a longer period as survival food. Many countries have put forth ban of its trade, leading to serious marketing issue. In this chapter, priority traits for genetic biofortification of grass pea and the genetic variability reported in the existing germplasm have been reviewed. Suitable analytical methods for estimating ODAP, protein and homoarginine concentration have been outlined. Further genetic variability for the target traits has been discussed along with currently available breeding methods and tools for mainstreaming biofortification efforts in grass pea. For low or no ODAP concentration in future varieties, recent advances in biotechnology and genomics-assisted breeding approaches are pertinent to deploy in this crop species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AACC International Method 46-30.01: AACC approved methods of analysis, 11th Edition. http://methods.aaccnet.org/summaries/46-30-01.aspx

  • Abd El Moneim AM, van Dorrestein B, Baum M, Ryan J, Bejiga G (2001) Role of ICARDA in improving the nutritional quality and yield potential of grass pea (Lathyrus sativus L.) for subsistence farmers in dry areas. Lathyrus Lathyrism Newsl 2:55–58

    Google Scholar 

  • Abd-El-Moneim AM, van Dorrestein B, Baum M, Mulugeta W (2000) Improving the nutritional quality and yield potential of grass pea (Lathyrus sativus L.). Food Nutr Bull 21:493–496

    Article  Google Scholar 

  • Adams MR, Golden DL, Register TC, Anthony MS, Hodgin JB, Maeda N, Williams JK (2002) The atheroprotective effect of dietary soy isoflavones in apolipoprotein E−/− mice requires the presence of estrogen receptor-α. Arterioscler Thromb Vasc Biol 22(11):1859–1864

    Article  CAS  PubMed  Google Scholar 

  • Adiga PR, Padmanaban G, Rao SLN, Sarma PS (1962) The isolation of a toxic principle from Lathyrus sativus seeds. J Sci Ind Res (India) 21C:284–286

    CAS  Google Scholar 

  • Adiga PR, Rao SLN, Sarma PS (1963) Some structural features and neurotoxic action of a compound from Lathyrus sativus seeds. Curr Sci 32:133–135

    Google Scholar 

  • Aletor VA, Abd-El-Moneim AM, Goodchild AV (1994) Evaluation of the seeds of selected lines of three Lathyrus spp. for β-N-oxalyl amino-L-alanine (BOAA), tannins, trypsin inhibitor activity and certain in vitro characteristics. J Sci Food Agric 65:143–151

    Article  CAS  Google Scholar 

  • Allkin RW, Macfarlane TD, White RJ, Bisby FA, Adey ME (1983) Name and synonyms of species and subspecies in the Vicieae, Vicieae Data base project publication No. 2. Vicieae Database Project, Southampton

    Google Scholar 

  • Allkin R, Goyder DJ, Bisby FA, White RJ (1986) Names and synonyms of species and subspecies in the Vicieae: issue 3, Vicieae Database Project, Experimental Taxonomic Information Products, Publication 7. Southampton University, Southampton

    Google Scholar 

  • Almeida JM (1980) A cultura de leguminosas para grão, fava, tremoço, chicharos e grão de gramicha. In: Documentagao sobre Forragens e Pastagens. INIA Lisbon, Lisbon

    Google Scholar 

  • Amara A, Coussemacq M, Geffard M (1995) Molecular detection of methionine in rat brain using specific antibodies. Neurosci Lett 185:147–150

    Article  CAS  PubMed  Google Scholar 

  • Arslan M, Oten M, Erkaymaz T, Tongur T, Kilic M, Elmasulu S, Cinar A (2017) β-N-oxalyl-L-2,3-diaminopropionic acid, L-homoarginine, and asparagine contents in the seeds of different genotypes Lathyrussativus L. as determined by UHPLC-MS/MS. Int J Food Prop 20(Suppl):S108–S118. https://doi.org/10.1080/10942912.2017.1289961

    Article  CAS  Google Scholar 

  • Ayaz FA, Inceer H, Hayırlıoğlu-Ayaz S (1999) An electrophoretic analysis of the seed proteins of some Vicia L. species from northeast Anatolia (Turkey). Pak J Biol Sci 2(4):1139–1142

    Google Scholar 

  • Badr A, Shazly HE, Rabey HE, Watson LE (2002) Systematic relationships in Lathyrus sect. Lathyrus (Fabaceae) based on amplified fragment length polymorphism (AFLP) data. Can J Bot 80:962–969

    Article  CAS  Google Scholar 

  • Barik DP, Mohapatra U, Chand PK (2005) Transgenic grass pea (Lathyrus sativus L.): factors influencing Agrobacterium-mediated transformation and regeneration. Plant Cell Rep 24:523–531. https://doi.org/10.1007/s00299-005-0957-5

    Article  CAS  PubMed  Google Scholar 

  • Barik DP, Acharya L, Mukherjee AK, Chand PK (2007) Analysis of genetic diversity among selected grass pea (Lathyrus sativus L.) genotypes using RAPD markers. Z Naturforsch C (German) 62:869–874

    Article  CAS  Google Scholar 

  • Barpete S, Parmar D, Sharma NC, Kumar S (2012) Karyotype analysis in grass pea (Lathyrus sativus L.). J Food Legum 25(1):14–17

    Google Scholar 

  • Barpete S, Aasim M, Khawar KM, Özcan SF, Özcan S (2014) Preconditioning effect of cytokinins on in vitro multiplication of embryonic node of grass pea (Lathyrus sativus L.). Turk J Biol 38:485–492. https://doi.org/10.3906/biy-1312-94

    Article  CAS  Google Scholar 

  • Barpete S, Aasim M, Ozcan SF, Khawar KM, Ozcan S (2017) High frequency axillary shoots induction in grass pea (Lathyrus sativus L.). Bangladesh J Bot 46:119–124

    Google Scholar 

  • Barpete S, Gupta P, Khawar KM, Özcan S, Kumar S (2020) In vitro approaches for shortening generation cycles and faster breeding of low Β-N-Oxalyl-L-Α, Β-diaminopropionic acid content of grass pea (Lathyrus sativus L.). Fresenius Environ Bull 29:2698–2706

    CAS  Google Scholar 

  • Belaid Y, Chtourou-Ghorbel N, Marrakchi M, Trifi-Farah N (2006) Genetic diversity within and between populations of Lathyrus genus (Fabaceae) revealed by ISSR markers. Genet Resour Crop Evol 53:1413–1418

    Article  CAS  Google Scholar 

  • Belay A, Moges G, Solomon T, Johansson G (1997) Thermal isomerization of the neurotoxin β-N-oxalyl-L-α, β-diaminopropionic acid. Phytochemistry 45:219–223

    Article  CAS  Google Scholar 

  • Bell EA, O’Donovan P (1966) The isolation of a and c-oxalyl derivatives of a, c-diaminobutyric acid from seeds of Lathyrus latifolius, and the detection of the α-oxalyl isomer of the neurotoxin α-amino-β-oxalyl amino propionic acid which occurs together with the neurotoxin in this and other species. Phytochemistry 5:1211–1219

    Article  CAS  Google Scholar 

  • Ben Brahim N, Combes D, Marrakchi M (2001) Autogamy and allogamy in genus Lathyrus. Lathyrus Lathyrism Newsl 2:21–26

    Google Scholar 

  • Berger JD, Siddique KHM, Loss SP (1999) Cool season grain legumes for Mediterranean environments: the effect of environment on non-protein amino acids in Vicia and Lathyrus species. Aust J Agric Res 50:403–412

    Article  CAS  Google Scholar 

  • Bisignano V, Gatta CD, Polignano GB (2002) Variation for protein content and seed weight in grass pea (Lathyrus spp.) germplasm. Plant Genet Res Newsletter 132:30–34

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Campbell CG (1997) Grass pea (Lathyrus sativus L), Promoting the conservation and use of underutilized and neglected crops. Vol 18. Institute of Plant Genetics and Crop Plant Research, Gatersleben & International Plant Genetic Resources Institute, Rome, pp 1–90

    Google Scholar 

  • Campbell CG, Mehra RB, Agrawal SK, Chen YZ, Abd-El-Moneim AM, Khawaja HIT, Yadav CR, Tay JU, Araya WA (1994) Current status and future strategy in breeding grass pea (Lathyrus sativus). Euphytica 73:167–175

    Article  Google Scholar 

  • Castiglioni S, Manzoni C, D’Uva A, Spiezie R, Monteggia E et al (2003) Soy proteins reduce progression of a focal lesion and lipoprotein oxidiability in rabbits fed a cholesterol-rich diet. Atherosclerosis 171(2):163–170

    Article  CAS  PubMed  Google Scholar 

  • Cavada PE, Juan R, Pastor JE, Alaiz M, Vioque J (2010) Protein isolates from two Mediterranean legumes: Lathyrus clymenum and Lathyrus annuus. Chemical composition, functional properties and protein characterisation. Food Chem 122(3):533–538

    Article  CAS  Google Scholar 

  • Cavada EP, Juan R, Pastorb JE, Alaiza M, Vioque J (2011) Nutritional characteristics of seed proteins in 15 Lathyrus species (fabaceae) from Southern Spain. LWT Food Sci Technol 44(4):1059–1064

    Article  CAS  Google Scholar 

  • Chandna M, Matta NK (1994) Studies on changing protein levels in developing and germinating seeds of Lathyrus sativus L. J Plant Biochem Biotechnol 3:59–61. https://doi.org/10.1007/bf03321950

    Article  CAS  Google Scholar 

  • Chavan UD, McKenzie DB, Shahidi F (2001) Functional properties of protein isolates from beach pea (Lathyrus maritimus L.). Food Chem 74(2):177–187

    Article  CAS  Google Scholar 

  • Chowdhury MA, Slinkard AE (1997) Natural outcrossing in grasspea. J Hered 88:154–156

    Article  Google Scholar 

  • Chtourou-Ghorbel N, Lauga B, Combes D, Marrakchi M (2001) Comparative genetic diversity studies in the genus Lathyrus using RFLP and RAPD markers. Lathyrus Lathyrism Newsl 2:62–68

    Google Scholar 

  • Croft AM, Pang ECK, Taylor PWJ (1999) Molecular analysis of Lathyrus sativus L. (grass pea) and related Lathyrus species. Euphytica 107:167–176

    Article  CAS  Google Scholar 

  • Datta S, Varshney RK (2009) Genomics enabled crop improvement in food legumes. In: Ali M, Kumar S (eds) Milestones in food legumes research, 1st edn. Indian Institute of Pulses Research (IIPR), Kanpur, pp 249–289

    Google Scholar 

  • De Bruyn A, Becu C, Lambein F, Kebede N, Abegaz B, Nunn P (1994) The mechanism of the rearrangement of the neurotoxin β-ODAP to α-ODAP. Phytochemistry 36:85–89

    Article  Google Scholar 

  • Desroches S, Mauger JF, Ausman LM, Lichtenstein AH, Lamarche B (2004) Soy protein favorably affects LDL size independently of isoflavones in hypercholesterolemic men and women. J Nutr 134(3):574–579

    Article  CAS  PubMed  Google Scholar 

  • Ding S, Wang M, Fang S, Xu H, Fan H, Tian Y, Zhai Y, Lu S, Qi X, Wei F, Sun G, Sun X (2018) D-dencichine regulates thrombopoiesis by promoting megakaryocyte adhesion, migration and proplatelet formation. Front Pharmacol 9:297. https://doi.org/10.3389/fphar.2018.00297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dnyanu CU (1998) Chemical and biochemical components of Beach pea (Lathyrus maritimus L.). Doctoral (PhD) thesis, Memorial University of Newfoundland

    Google Scholar 

  • Duke JA (1981) A handbook of legumes of world economic importance. Plenum Press, New York. https://doi.org/10.1007/978-1-4684-8151-8

    Book  Google Scholar 

  • Dumas JBA (1831) Procedes de L’analyse Organique. Ann Chim Phys 47:198–205

    Google Scholar 

  • Dunlop RA, Main BJ, Rodgers KJ (2015) The deleterious effects of non-protein amino acids from desert plants on human and animal health. J Arid Environ 112:152–158

    Article  Google Scholar 

  • Duranti M (2006) Grain legume proteins and nutraceutical properties. Fitoterapia 77:67–82

    Article  CAS  PubMed  Google Scholar 

  • Duranti M, Gius C (1997) Legume seeds: protein content and nutritional value. Field Crop Res 53(1–3):31–45

    Article  Google Scholar 

  • Duranti M, Lovati MR, Dani V, Barbiroli A, Scarafoni A et al (2004) The α′ subunit from soybean 7S globulin lowers plasma lipids and upregulates liver β-VLDL receptors in rats fed a hypercholesterolemic diet. J Nutr 134(6):1334–1339

    Article  CAS  PubMed  Google Scholar 

  • Eichinger PCH, Rothnie NE, Delaere I, Tate ME (2000) New technologies for toxin analyses in food legumes. In: Knight R (ed) Linking research and marketing opportunities for pulses in the 21st century. Kluwer Academic Publishers, Dordrecht, pp 685–692

    Chapter  Google Scholar 

  • El Haramein FJ, Moneim AA-E, Nakkoul H (1998) Prediction of the neuro-toxin beta-Noxalyl- amino-L-alanine in Lathyrus species, using near infrared reflectance spectroscopy. J Near Infrared Spectrosc 6:A93–A96

    Article  Google Scholar 

  • Emmrich PMF, Rejzek M, Hill L, Brett P, Edwards A, Sarkar A, Field RA, Martin C, Wang TL (2019) Linking a rapid throughput plate-assay with high-sensitivity stable-isotope label LCMS quantification permits the identification and characterisation of low β-L-ODAP grass pea lines. BMC Plant Biol 19:489

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Emmrich PMF, Sarkar A, Njaci I et al (2020) A draft genome of grass pea (Lathyrus sativus), a resilient diploid legume. https://doi.org/10.1101/2020.04.24.058164

  • Emre İ (2009) Electrophoretic analysis of some Lathyrus L. species based on seed storage proteins. Genet Resour Crop Evol 56(1):31–38

    Article  Google Scholar 

  • Emre I, Turgut-Balik D, Genc H, Sahin A (2006) The use of seed proteins revealed by SDS-PAGE in taxonomy of some Lathyrus L. species grown in Turkey. Pak J Biol Sci 9:2358–2361

    Google Scholar 

  • Emre İ, Turgut-Balık D, Şahin A (2007) Electrophoretic analysis of total protein profiles of some Lathyrus L. (Sect. Cicercula) grown in Turkey. Pak J Biol Sci 10(17):2890–2894

    Google Scholar 

  • Fikre A, Korbu L, Kuo YH, Lambein F (2008) The contents of the neuro-excitatory amino acid Β-Odap (B-NOxalyl- L-A,B-Diaminopropionic acid), and other free and protein amino acids in the seeds of different genotypes of grass pea (Lathyrus sativus L.). Food Chem 110:422–427

    Article  CAS  PubMed  Google Scholar 

  • Fikre A, Negwo T, Kuo YH, Lambein F, Ahmed S (2011) Climatic, edaphic and altitudinal factors affecting yield and toxicity of Lathyrus sativus grown at five locations in Ethiopia. Food Chem Toxicol 49(3):623–630

    Article  CAS  PubMed  Google Scholar 

  • Fukui K, Kojima M, Tachibana N, Kohno M, Takamatsu K, Hirotsuka M, Kito M (2004) Effects of soybean β-conglycinin on hepatic lipid metabolism and fecal lipid excretion in normal adult rats. Biosci Biotechnol Biochem 68(5):1153–1155

    Article  CAS  PubMed  Google Scholar 

  • Gatel F (1994) Protein quality of legume seeds for non-ruminant animals: a literature review. Anim Feed Sci Technol 45:317–348. https://doi.org/10.1016/0377-8401(94)90036-1

    Article  CAS  Google Scholar 

  • Getahun H, Lambein F, Vanhoorne M, Van der Stuyft P (2003) Food-aid cereals to reduce neurolathyrism related to grass pea preparations during famine. Lancet 362:1808–1810

    Article  PubMed  Google Scholar 

  • Getahun H, Lambein F, Vanhoorne M, Van der Stuyft P (2005) Neurolathyrism risk depends on type of grass pea preparation and on mixing with cereals and anti-oxidants. Trop Med Int Health 10:169–178

    Article  PubMed  Google Scholar 

  • Ghosh B, Mitra J, Chakraborty S, Bhattacharyya J, Chakraborty A, Sen SK et al (2015) Simple detection methods for antinutritive factor β-ODAP present in Lathyrus sativus L. by high pressure liquid chromatography and thin layer chromatography. PLoS ONE 10(11):e0140649. https://doi.org/10.1371/journal.pone.0140649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Girma D (2010) Ethiopian grass pea (Lathyrus sativus L.) started the genomics era: transient genetic transformation of grass pea. LAP Lambert Academic Publishing, Köln

    Google Scholar 

  • Girma D, Korbu L (2012) Genetic improvement of grass pea (Lathyrus sativus) in Ethiopia: an unfulfilled promise. Plant Breed 131:231–236. https://doi.org/10.1111/j.1439-0523.2011.01935.x

    Article  Google Scholar 

  • Gornall AG, Bardawill CJ, David MM (1949) Determination of serum proteins by means of the biuret reaction. J Biol Chem 177:5751

    Google Scholar 

  • Granati E, Bisignano V, Chiar D (2001) Grain quality in accessions of Lathyrus spp. Lathyrus Lathyrism Newsl 2:69–71

    Google Scholar 

  • Grela ER, Studzinski T, Matras J (2001) Anti-nutritional factors in seeds of Lathyrus sativus cultivated in Poland. Lathyrus Lathyrism Newsl 2:101–104

    Google Scholar 

  • Grela ER, Rybiński W, Klebaniuk R, Matras J (2010) Morphological characteristics of some accessions of grass pea (Lathyrus sativus L.) grown in Europe and nutritional traits of their seeds. Genet Resour Crop Evol 57:693–701. https://doi.org/10.1007/s10722-009-9505-4

  • Grela ER, Rybiński W, Matras J, Sobolewska S (2012) Variability of phenotypic and morphological characteristics of some Lathyrus sativus L. and Lathyrus cicera L. accessions and nutritional traits of their seeds. Genet Resour Crop Evol 59:1687. https://doi.org/10.1007/s10722-011-9791-5

  • Gupta P, Udupa SM, Sen Gupta DS, Kumar J, Kumar S (2018) Population structure analysis and determination of neurotoxin content in a set of grass pea (Lathyrus sativus L.) accessions of Bangladesh origin. Crop J 6:435–442. https://doi.org/10.1016/j.cj.2018.03.004

    Article  Google Scholar 

  • Gutiérrez, J, Vaquero F, Vences, F (1994) Allopolyploid vs. autopolyploid origins in the genus Lathyrus (Leguminosae). Heredity 73:29–40. https://doi.org/10.1038/hdy.1994.95

  • Hanbury CD, Sarker A, Siddique KHM, Perry MW (1995) Evaluation of Lathyrus germplasm in a Mediterranean type environment in south-western Australia, Occasional publication, no. 8. CLIMA, Perth

    Google Scholar 

  • Hanbury CD, Siddique KHM, Galwey NW, Cocks PS (1999) Genotype-environment interaction for seed yield and ODAP concentration of Lathyrus sativus L. and L. cicera L. in Mediterranean-type environments. Euphytica 110:45–60

    Article  CAS  Google Scholar 

  • Hanbury CD, White CL, Mullan BP, Siddique KHM (2000) A review of the potential of Lathyrus sativus L. and L. cicera L. grain for use as animal feed. Anim Feed Sci Technol 87:1–27

    Article  Google Scholar 

  • Harrison FL, Nunn PB, Hill RR (1977) Synthesis of α- and β-ODAP and their isolation from seeds of Lathyrus sativus. Phytochemistry 16:1211–1215

    Article  CAS  Google Scholar 

  • Hazrati N, Hassanzadeh M, Shahzad J-e-s (2011) In vitro selection for salt tolerance in lentil (Lens culinaris Medik). Int Res J Appl Basic Sci 2:35–39

    Google Scholar 

  • Horn MJ, Jones DB, Blum AE (1946) Colorimetric determination of methionine in proteins and foods. J Biol Chem 166:313–320

    Article  CAS  PubMed  Google Scholar 

  • Hove EL, King S (1978) Composition, protein quality and toxins of seeds of the grain legumes, Glycine max, Lupinus spp., Phaseolus spp., Pisum sativum and Vicia faba. N Z J Agric Res 21:457–462

    Article  CAS  Google Scholar 

  • Iantcheva A, Mysore KS, Ratet P (2013) Transformation of leguminous plants to study symbiotic interactions. Int J Dev Biol 57:577–586. https://doi.org/10.1387/ijdb.130239pr

    Article  CAS  PubMed  Google Scholar 

  • Jackson MT, Yunus AG (1984) Variation in the grass pea (L. sativus L.) and wild species. Euphytica 33:549–559

    Article  Google Scholar 

  • Jammulamadaka N, Burgula S, Medisetty R, Ilavazhagan G, Rao SLN, Singh SS (2011) β-N-oxalyl-l-α,β-diaminopropionic acid regulates mitogen-activated protein kinase signaling by down-regulation of phosphatidylethanolamine-binding protein 1. J Neurochem 118:176–186. https://doi.org/10.1111/j.1471-4159.2011.07299.x

    Article  CAS  PubMed  Google Scholar 

  • Jiao C-J, Jiang J-L, Ke L-M, Cheng W, Li F-M, Li Z-X, Wang C-Y (2011) Factors affecting β-ODAP content in Lathyrus sativus and their possible physiological mechanisms. Food Chem Toxicol 49:543–549. https://doi.org/10.1016/j.fct.2010.04.050

    Article  CAS  PubMed  Google Scholar 

  • Ke Q, Costa M (2006) Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol 70:1469–1480. https://doi.org/10.1124/mol.106.027029

    Article  CAS  PubMed  Google Scholar 

  • Khawaja HIT (1988) A new inter-specific Lathyrus hybrid to introduce the yellow flower color into sweat pea. Euphytica 37:69–75

    Article  Google Scholar 

  • Khawaja HIT, Sybenga J, Ellis JR (1997) Chromosome pairing and chiasma formation in autopolyploids of different Lathyrus species. Genome 40:937–944

    Article  CAS  PubMed  Google Scholar 

  • Kiyoshi Y, Toshiyuki F, Blumenreich ID (1985) In: Kaul AK, Combes D (eds) Isozymic variation and interspecific crossability in annual species of genus Lathyrus L. Lathyrus and Lathyrism, Pau, pp 118–129

    Google Scholar 

  • Kjeldahl J (1883) “Neue Methode zur Bestimmung des Stickstoffs in organischen Körpern” (New method for the determination of nitrogen in organic substances). Z Anal Chem 22(1):366–383

    Article  Google Scholar 

  • Kumar J, Pratap A, Solanki RK, Gupta DS, Goyal A, Chaturvedi SK, Nadarajan N, Kumar S (2011a) Genomic resources for improving food legume crops. J Agric Sci (Lond) 150:289–318

    Article  CAS  Google Scholar 

  • Kumar S, Bejiga G, Ahmed S, Nakkoul H, Sarker A (2011b) Genetic improvement of grass pea for low neurotoxin (ODAP) content. Food Chem Toxicol 49:589–600

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Gupta P, Barpete S, Sarker A, Amri A, Mathur PN, Baum M (2013) Grass pea. In: Singh M, Upadhyaya HD, Bisht IS (eds) Genetic and genomic resources for grain legume improvement. Elsevier, Amsterdam, pp 269–293. https://doi.org/10.1016/B978-0-12-397935-3.00011-6

    Chapter  Google Scholar 

  • Kumar V, Chattopadhyay A, Ghosh S, Irfan M, Chakraborty N, Chakraborty S, Datta A (2016) Improving nutritional quality and fungal tolerance in soya bean and grass pea by expressing an oxalate decarboxylase. Plant Biotechnol J 14:1394–1405. https://doi.org/10.1111/pbi.12503

    Article  CAS  PubMed  Google Scholar 

  • Kumari S, Vikas Kumar Jha, Diksha Kumari, Ravi Ranjan, Nimmy MS, Anand Kumar, Chandan Kishore And Vinod Kumar (2018): Protein content of Lathyrus sativus collected from diverse locations. J Pharmacogn Phytochem SP1: 1610-1611

    Google Scholar 

  • Kuo YH, Khan JK, Lambein F (1993) Biosynthesis of the neurotoxin β-ODAP in developing pods of Lathyrus sativus. Phytochemistry 35(4):911–913

    Article  Google Scholar 

  • Kuo Y-H, Ikegami F, Lambein F (1998) Metabolic routes of β-(isoxazolin-5-on-2-yl)-l-alanine (BIA), the precursor of the neurotoxin ODAP (β-N-oxalyl-l-α,β-diaminopropionic acid), in different legume seedlings. Phytochemistry 49:43–48. https://doi.org/10.1016/s0031-9422(97)01001-7

    Article  CAS  Google Scholar 

  • Kupicha FK (1983) The infrageneric structure of Lathyrus. Notes R Bot Gard Edinb 41:209–244

    Google Scholar 

  • Lambein F, Kuo Y-H (2004) Prevention of neurolathyrism during drought. Lancet 363:657. https://doi.org/10.1016/S0140-6736(04)15601-8

    Article  PubMed  Google Scholar 

  • Lambein F, Khan JK, Kuo YH, Campbell CG, Briggs CJ (1993) Toxin in the seedlings of some varieties of grass pea (Lathyrus sativus). Nat Toxins 1:246–249

    Article  CAS  PubMed  Google Scholar 

  • Lambein F, Haque R, Khan JK, Kebede N, Kuo YH (1994) From soil to brain: zinc deficiency increases the neurotoxicity of Lathyrus sativus and may affect the susceptibility for the motorneurone disease neurolathyrism. Toxicon 32(4):461–466

    Article  CAS  PubMed  Google Scholar 

  • Lambein F, Travella S, Kuo Y et al (2019) Grass pea (Lathyrus sativus L.): orphan crop, nutraceutical or just plain food? Planta 250:821–838. https://doi.org/10.1007/s00425-018-03084-0

    Article  CAS  PubMed  Google Scholar 

  • Llorent-Martínez EJ, Zengin G, Fernández-de Córdova ML, Bender O, Atalay A, Ceylan R, Mollica A, Mocan A, Uysal S, Guler GO, Aktumsek A (2017) Traditionally used Lathyrus species: phytochemical composition, antioxidant activity, enzyme inhibitory properties, cytotoxic effects, and in silico studies of L. czeczottianus and L. nissolia. Front Pharmacol 8:83. https://doi.org/10.3389/fphar.2017.00083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long YC, Ye YH, Xing QY (1996) Studies on the neuroexcitotoxin β-N-oxalo-L-α, β-diaminopropionic acid and its isomer α -N-oxalo-L-α, β-diaminopropionic acid from the root of Panax species. Int J Protein Pept Res 47:42–47

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–75

    Google Scholar 

  • Mahler-Slasky Y, Kislev ME (2010) Lathyrus consumption in late bronze and iron age sites in Israel: an Aegean affinity. J Archaeol Sci 37:2477–2485. https://doi.org/10.1016/j.jas.2010.05.008

    Article  Google Scholar 

  • Mehta SL, Santha IM (1996) Plant biotechnology for development of non-toxic strains of Lathyrus sativus. In: Arora RK, Mathur PN, Riley KW, Adham Y (eds) Lathyrus genetic resources in Asia. International Plant Genetic Resources Institute, Rome, pp 129–138

    Google Scholar 

  • Mehta SL, Ali K, Barna KS (1994) Somaclonal variation in a food legume – Lathyrus sativus. Indian J Plant Biochem Biotechnol 3:73–77

    Article  Google Scholar 

  • Mohanty S, Panda M, Subudhi E, Nayak S (2008) Plant regeneration from callus culture of Curcuma aromatic and in vitro detection of somaclonal variation through cytophotometric analysis. Biol Plant 52:783–786

    Article  Google Scholar 

  • Mondal MMA, Puteh AB (2014) Spectrum of variability in seed size and content of protein and Odap in grass pea (Lathyrus sativus L.) germplasm. Legum Res Int J 37(5):479–482

    Article  Google Scholar 

  • Murti VVS, Seshadri TR, Venkatasubramanian TA (1964) Neurotoxic compound of the seeds of Lathyrus sativus. Phytochemistry 3:73–78

    Article  CAS  Google Scholar 

  • Narayan RKJ (1991) Molecular organization of the plant genome: its relation to structure, recombination and evolution of chromosomes. J Genet 70:43–61

    Article  CAS  Google Scholar 

  • Nunn PB, Seelig M, Zagoren JC, Spencer PS (1987) Stereospecific acute neurotoxicity of uncommon plant amino acids linked to human motor-system diseases. Brain Res 410:375–379

    Article  CAS  PubMed  Google Scholar 

  • Ochatt SJ, Abirached-Darmency M, Marget P, Aubert G (2007) The Lathyrus paradox: ‘poor men’s diet’ or a remarkable genetic resource for protein legume breeding? In: Ochatt S, Jain SM (eds) Breeding of neglected and under-utilised crops, spices and herbs. Science Publishers, Enfield, pp 41–60

    Chapter  Google Scholar 

  • Padmajaprasad V, Kaladhar M, Bhat RV (1997) Thermal isomerization of β-N-oxalyl-L-α, β-diaminopropionic acid, the neurotoxin in Lathyrus sativus during cooking. Food Chem 59:77–80

    Article  CAS  Google Scholar 

  • Padmanaban G (1980) Lathyrogens. In: Leiner IE (ed) Toxic constituents of plant foodstuffs. Academic Press, New York, pp 244–250

    Google Scholar 

  • Pandey RL, Chitale MW, Sharma RN, Geda AK (1997) Evaluation and characterization of germplasm of grass pea (Lathyrus sativus). J Med Aromat Plant Sci 19:14–16

    Google Scholar 

  • Pandey RL, Kashyap OP, Sharma RN, Nanda HC, Geda AK, Nair S (2008) Catalogue on grass pea (Lathyrus sativus L.) germplasm. Indira Gandhi Krishi Vishwavidyalaya, Raipur, p 213

    Google Scholar 

  • Petterson DS, Sipsas S, Mackintosh JB (1997) The chemical composition and nutritive value of Australian pulses, 2nd edn. Grains Research and Development Corporation, Canberra

    Google Scholar 

  • Piergiovanni AR, Damascelli A (2011) L-Homoarginine accumulation in grass pea (Lathyrus sativus L.) dry seeds. A preliminary survey. Food Nutr Sci 2:207–213. https://doi.org/10.4236/fns.2011.23028

    Article  CAS  Google Scholar 

  • Piergiovanni AR, Lupo F, Zaccardelli M (2011) Environmental effect on yield, composition and technological seed traits of some Italian ecotypes of grass pea (Lathyrus sativus L.). J Sci Food Agric 91(2011):122–129

    Article  CAS  PubMed  Google Scholar 

  • Prasad AB, Das AK (1980) Morphological variants in Khesari. Indian J Genet Plant Breed 40:172–175

    Google Scholar 

  • Przybylska J, Zimniak-Przybylska Z, Krajewski P (2000) Diversity of seed globulins in Lathyrus sativus L. and some related species. Genet Resour Crop Evol 47:239–246

    Article  Google Scholar 

  • Quereshi MY, Pilbean DJ, Evans CS, Bell EA (1977) The neurolathyrism of β-N-oxalyl-L-α, β-diaminopropionic acid in legume seeds. Phytochemistry 16:477–479

    Article  CAS  Google Scholar 

  • Rahman MM, Kumar J, Rahman MA, Afzal MA (1995) Natural outcrossing in Lathyrus sativus L. Indian J Genet Plant Breed 55:204–207

    Google Scholar 

  • Rao SLN (1978) A sensitive and specific colorimetric method for the determination of a, β-diaminopropionic acid and the Lathyrus sativus neurotoxin. Anal Biochem 86:386–395

    Article  CAS  PubMed  Google Scholar 

  • Rao SLN (2011) A look at the brighter facets of β-N-oxalyl-l-α,β- diaminopropionic acid, homoarginine and the grass pea. Food Chem Toxicol 49:620–622. https://doi.org/10.1016/j.fct.2010.06.054

    Article  CAS  PubMed  Google Scholar 

  • Rao SLN, Adiga PR, Sarma PS (1964) The isolation and characterization of β-N-Oxalyl-L-α, β-Diaminopropionic acid: a neurotoxin from the seeds of Lathyrus sativus. Biochemistry 3:432–436

    Article  CAS  PubMed  Google Scholar 

  • Ravindran V, Blair R (1992) Feed resources for poultry production in Asia and the Pacific. II. Plant protein sources. Worlds Poult Sci J 48:205–231. https://doi.org/10.1079/WPS19920017

    Article  Google Scholar 

  • Rizvi AH, Sarker A, Dogra A (2016) Enhancing grass pea (Lathyrus sativus L.) production in problematic soils of South Asia for nutritional security. Indian J Genet Plant Breed 76:583–592. https://doi.org/10.5958/0975-6906.2016.00074.2

    Article  Google Scholar 

  • Robertson LD, Abd-El-Moneim AM (1997) Status of Lathyrus germplasm held at ICARDA and its use in breeding programs. In: Mathur PN, Rao VR, Arora RK (eds) Lathyrus genetic resources network. Proceedings of a IPGRI-ICARDA-ICAR Regional Working Group Meeting, 8–10 December 1997. IPGRI, New Delhi, pp 30–41

    Google Scholar 

  • Rosa MJS, Ferreira RB, Teixeira AR (2000) Storage proteins from Lathyrus sativus seeds. J Agric Food Chem 48(11):5432–5439

    Article  CAS  PubMed  Google Scholar 

  • Ross SM, Roy DN, Spencer PS (1989) β-N-oxalyl amino-L-alanine action on glutamate receptors. J Neurochem 53:710–715

    Article  CAS  PubMed  Google Scholar 

  • Roy DN, Rao KV (1978) Physicochemical values in different varieties of Lathyrus sativus and their interrelationships. J Agric Food Chem 26:687–689

    Article  CAS  PubMed  Google Scholar 

  • Roy DN, Nagarajan V, Gopalan C (1963) Production of neurolathyrism in chicks by the injection of Lathyrus sativus concentrates. Curr Sci 32:116–118

    Google Scholar 

  • Roy PK, Gupta N, Barat GK, Mehta SL (1993) 3 -N-oxalyl-L- a, 13 diaminopropionic acid in somaclones derived from internodes explants of Lathyrus sativus. Indian J Plant Biochem Biotechnol 2:9–13

    Article  CAS  Google Scholar 

  • Rybinski W, Blaszczak W, Fornal J (2006) Seed microstructure and genetic variation of characters in selected grass-pea mutants (Lathyrus sativus L.). Int Agrophys 20(4):317

    Google Scholar 

  • Santha IM, Mehta SL (2001) Development of low ODAP somaclones of Lathyrus sativus. Lathyrus Lathyrism Newsl 2:42

    Google Scholar 

  • Shergill-Bonner R (2013) Micronutrients. Paediatr Child Health 23(8):331–336

    Article  Google Scholar 

  • Shiferaw E, Porceddu E (2018) Assessment of variability in grass pea germplasm using β-ODAP content and seed protein electrophoresis. Ann Food Sci Technol 19:316–323

    CAS  Google Scholar 

  • Shiferaw E, Pe ME, Porceddu E, Ponnaiah M (2012) Exploring the genetic diversity of Ethiopian grass pea (Lathyrus sativus L.) using EST-SSR markers. Mol Breed 30(2012):789–797

    Article  CAS  PubMed  Google Scholar 

  • Shobhana S, Sangawan PS, Nainawase HS, Lal BM (1976) Chemical composition of some improved varieties of pulses. J Food Sci Technol 13:49–51

    CAS  Google Scholar 

  • Siddique KHM, Loss SP, Herwig SP, Wilson JM (1996) Growth, yield and neurotoxin (ODAP) concentration of three Lathyrus species in Mediterranean-type environments of Western Australia. Aust J Exp Agric 36(2):209–218

    Article  Google Scholar 

  • Silva AB, Gonçalves L, Mecha E, Pereira F, Patto MCV, Bronze M d R (2019) An improved HILIC HPLC-MS/MS method for the determination of beta-ODAP and its alpha isomer in Lathyrus sativus. Molecules 24:3043

    Article  CAS  Google Scholar 

  • Singh SS, Rao SLN (2013) Lessons from neurolathyrism: a disease of the past & the future of Lathyrus sativus (Khesari dal). Indian J Med Res 138:32–37

    PubMed  PubMed Central  Google Scholar 

  • Skiba B, Ford R, Pang EC (2003) Amplification and detection of polymorphic sequence-tagged sites in Lathyrus sativus. Plant Mol Biol Report 21(2003):391–404

    Article  CAS  Google Scholar 

  • Smartt J (1984) Evolution of grain legumes. I. Mediterranean pulses. Exp Agric 20:275–296

    Article  Google Scholar 

  • Soren KR, Yadav A, Pandey G, Gangwar P, Parihar AK, Bohra A, Dixit GP, Datta S, Singh NP (2015) EST-SSR analysis provides insights about genetic relatedness, population structure and gene flow in grass pea (Lathyrus sativus). Plant Breed 134:338–344

    Article  Google Scholar 

  • Spencer PS, Roy DN, Ludolph A, Hugon J, Schaumburg HH (1986) Lathyrism: evidence for role of the neuroexcitatory amino acid BOAA. Lancet 2:1066–1067

    Article  CAS  PubMed  Google Scholar 

  • Sybenga J (1995) Meiotic pairing in autohexaploid Lathyrus: a mathematical model. Heredity 75(4):343–350

    Article  Google Scholar 

  • Tadesse W, Bekele E (2003) Variation and association of morphological and biochemical characters in grass pea (Lathyrus sativus L.). Euphytica 130:315–324

    Article  CAS  Google Scholar 

  • Talukdar D (2009) Recent progress on genetic analysis of novel mutants and aneuploid research in grass pea (Lathyrus sativus L.). Afr J Agric Res 4:1549–1559

    Google Scholar 

  • Talukdar D (2012) Changes in neurotoxin, β-N-oxalyl-l-α,β- diaminopropionic acid (β-ODAP), level in grass pea (Lathyrus sativus L.) genotypes under arsenic treatments. J Appl Biosci 38:148–153

    CAS  Google Scholar 

  • Tamburino R, Guida V, Pacifico S, Rocco M, Zarelli A, Parente A, Di Maro A (2012) Nutritional values and radical scavenging capacities of grass pea (Lathyrus sativus L.) seeds in Valle Agricola district, Italy. Aust J Crop Sci 6:149–156

    CAS  Google Scholar 

  • Tavoletti S, Iommarini L (2007) Molecular marker analysis of genetic variation characterizing a grass pea (Lathyrus sativus) collection from central Italy. Plant Breed 126:607–611

    Article  CAS  Google Scholar 

  • Tavoletti S, Iommarini L, Crino P, Granati E (2005) Collection and evaluation of grass pea (Lathyrus sativus L.) germplasm of central Italy. Plant Breed 124:388–391

    Article  Google Scholar 

  • Thavarajah D, Vandenberg A, George GN, Pickering IJ (2007) Chemical form of selenium in naturally selenium-rich lentils (Lens culinaris L.) from Saskatchewan. J Agric Food Chem 55:7337–7341

    Article  CAS  PubMed  Google Scholar 

  • Thavarajah D, Ruszkowski J, Vandenberg A (2008) High potential for selenium biofortification of lentils (Lens culinaris L.). J Agric Food Chem 56:10747–10753

    Article  CAS  PubMed  Google Scholar 

  • Thavarajah D, Thavarajah P, Sarker A, Vandenberg A (2009) Lentils (Lens culinaris Medikus subspecies culinaris): a whole food for increased iron and zinc intake. J Agric Food Chem 57:5413–5419

    Article  CAS  PubMed  Google Scholar 

  • Tripathy SK, Panda A, Nayak PK, Dash S, Lenka D, Mishra DR, Kar RK, Senapati N, Dash GB (2016) Somaclonal variation for genetic improvement in grass pea (Lathyrus sativus L.). Legum Res 39:329–335. https://doi.org/10.18805/1r.v0iOF.6853

    Article  Google Scholar 

  • Urga K, Fufa H, Biratu E, Husain A (2005) Evaluation of Lathyrus sativus cultivated in Ethiopia for proximate composition, minerals, β-ODAP and anti-nutritional components. Afr J Food Agric Nutr Dev 5:1–16

    Google Scholar 

  • Valarini MJ, Otsuk IP, Carneiro Vieira ML (1997) Changes in N2 fixation in Stylosanthes scabra derived from tissue culture. Braz J Genet 20:1–6

    Article  Google Scholar 

  • Van Moorhem M, Decrock E, Coussee E, Faes L, De Vuyst E, Vranckx K, De Bock M, Wang N, D’Herde K, Lambein F, Callewaert G, Leybaert L (2010) l-β-ODAP alters mitochondrial Ca2+ handling as an early event in excitotoxicity. Cell Calcium 47:287–296. https://doi.org/10.1016/j.ceca.2010.01.001

    Article  CAS  PubMed  Google Scholar 

  • van Wyk SG, Kunert KJ, Cullis CA, Pillay P, Makgopa ME, Schlüter U, Vorster BJ (2016) Review: the future of cystatin engineering. Plant Sci 246:119–127. https://doi.org/10.1016/j.plantsci.2016.02.016

    Article  CAS  PubMed  Google Scholar 

  • Van-Dorrestein B, Baum M, Abd-El-Moneim AM (1998) Use of somaclonal variation in Lathyrus sativus (grass pea) to select variants with low ODAP concentration. In: Proceedings of the 3rd European Conference on grain legumes, Valladolid, Spain. AEP, Paris, p 364

    Google Scholar 

  • Varshney RK, Glaszmann JC, Leung H, Ribaut M (2010) More genomic resources for less-studied crops. Trends Biotechnol 28:452–460. https://doi.org/10.1016/j.tibtech.2010.06.007

    Article  CAS  PubMed  Google Scholar 

  • Waghmare VN, Mehra RB (2000) Induced genetic variability for quantitative characters in grasspea (Lathyrus sativus L.). Indian J Genet 60(1):81–87

    Google Scholar 

  • Waghmare VN, Mehra RB (2001) Induced chlorophyll mutations, mutagenic effectiveness and efficiency in Lathyrus sativus L. Indian J Genet 61(1):53–56

    Google Scholar 

  • Waghmare VN, Waghmare DN, Mehra RB (2001) An induced fasciated mutant in grass pea (Lathyrus sativus L.). Indian J Genet Plant Breed 61(2):155–157

    Google Scholar 

  • Wang F, Chen X, Chen Q, Qin X, Li Z (2000) Determination of neurotoxin β-N-oxalyl-L-α, β-diaminopropionic acid and nonprotein amino acids in Lathyrus sativus by precolumn derivatization with 1-fluoro-2, 4-dinitrobenzene. J Chromatogr A883:113–118

    Article  Google Scholar 

  • Xiong J-L, Xiong Y-C, Bai X, Kong H-Y, Tan R-Y, Zhu H, Siddique KHM, Wang J-Y, Turner NC (2015) Genotypic variation in the concentration of β-N-Oxalyl-L-α, β-diaminopropionic acid (β-ODAP) in grass pea (Lathyrus sativus L.) seeds is associated with an accumulation of leaf and pod β-ODAP during vegetative and reproductive stages at three levels of water stress. J Agric Food Chem 63:6133–6141

    Article  CAS  PubMed  Google Scholar 

  • Yan Z-Y, Spencer PS, Li Z-X, Liang Y-M, Wang Y-F, Wang C-Y, Li F-M (2005) Lathyrus sativus (grass pea) and its neurotoxin ODAP. Phytochemistry 67:107–121. https://doi.org/10.1016/j.phytochem.2005.10.022

    Article  CAS  PubMed  Google Scholar 

  • Yan B, Chtourou-Ghorbel N, Marrakchi M, Trifi-Farah N (2006) Genetic diversity within and between populations of Lathyrus genus (Fabaceae) revealed by ISSR markers. Genet Resour Crop Evol 53:1413–1418

    Article  CAS  Google Scholar 

  • Yang T, Jiang J, Burlyaeva M, Hu J, Coyne CJ, Kumar S, Redden R, Sun X, Wang F, Chang J, Hao X, Guan J, Zong X (2014) Large-scale microsatellite development in grass pea (Lathyrus sativus L.), an orphan legume of the arid areas. BMC Plant Biol 14:65

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zambre M, Chowdhury B, Kuo Y-H, Van Montagu M, Angenon G, Lambein F (2002) Prolific regeneration of fertile plants from green nodular callus induced from meristematic tissues in Lathyrus sativus L. (grass pea). Plant Sci 163:1107–1112. https://doi.org/10.1016/S0168-9452(02)00319-9

    Article  CAS  Google Scholar 

  • Zhao L, Chen XG, Hu ZD, Li QF, Chen Q, Li ZX (1999a) Analysis of β-N-oxalyl-L-α, β-diaminopropionic acid and homoarginine in Lathyrus sativus by capillary zone electrophoresis. J Chromatogr 857:295–302

    Article  CAS  Google Scholar 

  • Zhao L, Li Z, Li G, Chen X, Hu Z (1999b) Kinetics studies on thermal isomerization of β-N-oxalyl-L-α, β-diaminopropionic acid by capillary zone electrophoresis. Phys Chem Chem Phys 1:3771–3773

    Article  CAS  Google Scholar 

  • Zhao R, Sun H, Mei C, Wang X, Yan L, Liu R et al (2011) The arabidopsis Ca2+-dependent protein kinase CPK12 negatively regulates abscisic acid signaling in seed germination and post-germination growth. New Phytol 192:61–73. https://doi.org/10.1111/j.1469-8137.2011.03793.x

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiv Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sen Gupta, D., Barpete, S., Kumar, J., Kumar, S. (2021). Breeding for Better Grain Quality in Lathyrus. In: Gupta, D.S., Gupta, S., Kumar, J. (eds) Breeding for Enhanced Nutrition and Bio-Active Compounds in Food Legumes. Springer, Cham. https://doi.org/10.1007/978-3-030-59215-8_6

Download citation

Publish with us

Policies and ethics