Skip to main content

Efficient Construction of Hierarchical Overlap Graphs

  • Conference paper
  • First Online:
String Processing and Information Retrieval (SPIRE 2020)

Abstract

The hierarchical overlap graph (HOG for short) is an overlap encoding graph that efficiently represents overlaps from a given set P of n strings. A previously known algorithm constructs the HOG in \(O(\vert \vert P \vert \vert + n^2)\) time and \(O(\vert \vert P \vert \vert +n\times \min (n,\max \{|s|:s\in P\}))\) space, where \(\vert \vert P \vert \vert \) is the sum of lengths of the n strings in P. We present a new algorithm of \(O(\vert \vert P \vert \vert \log n)\) time and \(O(\vert \vert P \vert \vert )\) space to compute the HOG, which exploits the segment tree data structure. We also propose an alternative algorithm using \(O(\vert \vert P \vert \vert \frac{\log n}{\log \log n})\) time and \(O(\vert \vert P \vert \vert )\) space in the word RAM model of computation.

S. G. Park and K. Park—Supported by Institute for Information & communications Technology Promotion(IITP) grant funded by the Korea government (MSIT) (No. 2018-0-00551, Framework of Practical Algorithms for NP-hard Graph Problems).

E. Rivals—ER thanks funding Labex NUMEV, GEM project (ANR 2011-LABX-076).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aho, A.V., Corasick, M.J.: Efficient string matching: an aid to bibliographic search. Commun. ACM 18(6), 333–340 (1975). https://doi.org/10.1145/360825.360855

    Article  MathSciNet  MATH  Google Scholar 

  2. Arge, L., Brodal, G.S., Georgiadis, L.: Improved dynamic planar point location. In: 47th Proceedings of FOCS, pp. 305–314 (2006). https://doi.org/10.1109/FOCS.2006.40

  3. Armen, C., Stein, C.: A \(2\frac{2}{3}\)-approximation algorithm for the shortest superstring problem. In: CPM, pp. 87–101 (1996). https://doi.org/10.1007/3-540-61258-0_8

  4. Bassino, F., Clement, J., Nicodeme, P.: Counting occurrences for a finite set of words: combinatorial methods. ACM Trans. Algorithms 8(3), 31:1–31:28 (2012). https://doi.org/10.1145/2229163.2229175

  5. Berg, M., Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms and Applications, 3rd edn. Springer, Berlin (2008). https://doi.org/10.1007/978-3-540-77974-2

    Book  MATH  Google Scholar 

  6. Blum, A., Jiang, T., Li, M., Tromp, J., Yannakakis, M.: Linear approximation of shortest superstrings. J. ACM 41(4), 630–647 (1994). https://doi.org/10.1145/179812.179818

    Article  MathSciNet  MATH  Google Scholar 

  7. Cazaux, B., Juhel, S., Rivals, E.: Practical lower and upper bounds for the shortest linear superstring. In: SEA, pp. 18:1–18:14 (2018). https://doi.org/10.4230/LIPIcs.SEA.2018.18

  8. Cazaux, B., Rivals, E.: A linear time algorithm for shortest cyclic cover of strings. J. Discrete Algorithms 37, 56–67 (2016). https://doi.org/10.1016/j.jda.2016.05.001

    Article  MathSciNet  MATH  Google Scholar 

  9. Cazaux, B., Rivals, E.: Hierarchical overlap graph. Inf. Process. Lett. 155, 105862 (2020). https://doi.org/10.1016/j.ipl.2019.105862

    Article  MathSciNet  MATH  Google Scholar 

  10. Gevezes, T.P., Pitsoulis, L.S.: Recognition of overlap graphs. J. Comb. Optim. 28(1), 25–37 (2013). https://doi.org/10.1007/s10878-013-9663-3

    Article  MathSciNet  MATH  Google Scholar 

  11. Giora, Y., Kaplan, H.: Optimal dynamic vertical ray shooting in rectilinear planar subdivisions. ACM Trans. Algorithms 5(3) (2009). https://doi.org/10.1145/1541885.1541889

  12. Gonnella, G., Kurtz, S.: Readjoiner: a fast and memory efficient string graph-based sequence assembler. BMC Bioinform. 13(1), 82 (2012). https://doi.org/10.1186/1471-2105-13-82

    Article  Google Scholar 

  13. Guibas, L.J., Odlyzko, A.M.: Periods in strings. J. Comb. Theory Ser. A 30(1), 19–42 (1981). https://doi.org/10.1016/0097-3165(81)90038-8

    Article  MathSciNet  MATH  Google Scholar 

  14. Gusfield, D., Landau, G.M., Schieber, B.: An efficient algorithm for the all pairs suffix-prefix problem. Inf. Process. Lett. 41(4), 181–185 (1992). https://doi.org/10.1016/0020-0190(92)90176-V

    Article  MathSciNet  MATH  Google Scholar 

  15. Hagerup, T.: Sorting and searching on the word RAM. In: Morvan, M., Meinel, C., Krob, D. (eds.) STACS 1998. LNCS, vol. 1373, pp. 366–398. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0028575

    Chapter  Google Scholar 

  16. Tomohiro, I., Inenaga, S., Bannai, H., Takeda, M.: Inferring strings from suffix trees and links on a binary alphabet. Discret. Appl. Math. 163, 316–325 (2014). https://doi.org/10.1016/j.dam.2013.02.033

    Article  MathSciNet  MATH  Google Scholar 

  17. Jacquet, P., Szpankowski, W.: Autocorrelation on words and its applications: analysis of suffix trees by string-ruler approach. J. Comb. Theory Ser. A 66(2), 237–269 (1994). https://doi.org/10.1016/0097-3165(94)90065-5

    Article  MathSciNet  MATH  Google Scholar 

  18. Karkkainen, J., Piatkowski, M., Puglisi, S.J.: String inference from longest-common-prefix array. In: ICALP. LIPIcs, vol. 80, pp. 62:1–62:14 (2017). https://doi.org/10.4230/LIPIcs.ICALP.2017.62

  19. Laaksonen, A.: Guide to Competitive Programming. UTCS. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72547-5

    Book  MATH  Google Scholar 

  20. Lim, J., Park, K.: A fast algorithm for the all-pairs suffix-prefix problem. Theoret. Comput. Sci. 698, 14–24 (2017). https://doi.org/10.1016/j.tcs.2017.07.013

    Article  MathSciNet  MATH  Google Scholar 

  21. Mucha, M.: Lyndon words and short superstrings. In: SODA, pp. 958–972. SIAM (2013). https://doi.org/10.1137/1.9781611973105.69

  22. Myers, E.W.: The fragment assembly string graph. Bioinformatics 21(Suppl. 2), ii79–ii85 (2005). https://doi.org/10.1093/bioinformatics/bti1114

  23. Paluch, K.: Better approximation algorithms for maximum asymmetric traveling salesman and shortest superstring (2014). https://arxiv.org/abs/1401.3670

  24. Park, G., Hwang, H., Nicodeme, P., Szpankowski, W.: Profiles of tries. SIAM J. Comput. 38(5), 1821–1880 (2009). https://doi.org/10.1137/070685531

    Article  MathSciNet  MATH  Google Scholar 

  25. Peltola, H., Soderlund, H., Tarhio, J., Ukkonen, E.: Algorithms for some string matching problems arising in molecular genetics. In: IFIP Congress, pp. 53–64 (1983)

    Google Scholar 

  26. Pevzner, P.A., Tang, H., Waterman, M.S.: An eulerian path approach to DNA fragment assembly. Proc. Natl. Acad. Sci. 98(17), 9748–9753 (2001). https://doi.org/10.1073/pnas.171285098

    Article  MathSciNet  MATH  Google Scholar 

  27. Rachid, M.H., Malluhi, Q.: A practical and scalable tool to find overlaps between sequences. BioMed Res. Int. 2015 (2015). https://doi.org/10.1155/2015/905261

  28. Robin, S., Rodolphe, F., Schbath, S.: DNA, Words and Models. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  29. Sweedyk, Z.: A \(2\frac{1}{2}\)-approximation algorithm for shortest superstring. SIAM J. Comput. 29(3), 954–986 (2000). https://doi.org/10.1137/S0097539796324661

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunsoo Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Park, S.G., Cazaux, B., Park, K., Rivals, E. (2020). Efficient Construction of Hierarchical Overlap Graphs. In: Boucher, C., Thankachan, S.V. (eds) String Processing and Information Retrieval. SPIRE 2020. Lecture Notes in Computer Science(), vol 12303. Springer, Cham. https://doi.org/10.1007/978-3-030-59212-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59212-7_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59211-0

  • Online ISBN: 978-3-030-59212-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics