Skip to main content

Explainable Reactive Synthesis

  • Conference paper
  • First Online:
Automated Technology for Verification and Analysis (ATVA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 12302))

Abstract

Reactive synthesis transforms a specification of a reactive system, given in a temporal logic, into an implementation. The main advantage of synthesis is that it is automatic. The main disadvantage is that the implementation is usually very difficult to understand. In this paper, we present a new synthesis process that explains the synthesized implementation to the user. The process starts with a simple version of the specification and a corresponding simple implementation. Then, desired properties are added one by one, and the corresponding transformations, repairing the implementation, are explained in terms of counterexample traces. We present SAT-based algorithms for the synthesis of repairs and explanations. The algorithms are evaluated on a range of examples including benchmarks taken from the SYNTCOMP competition.

This work was partially supported by the Collaborative Research Center “Foundations of Perspicuous Software Systems” (TRR: 248, 389792660), the European Research Council (ERC) Grant OSARES (No. 683300), the DARPA Assured Autonomy program, the iCyPhy center, and by Berkeley Deep drive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The sub-formula states that initially no grant is given to client i as long as no request is received from this client. After that, the formula ensures that a grant is active only if the current request is still active, otherwise, and from this point on, no grants are given as long as no new request is received.

References

  1. Babiak, T., Křetínský, M., Řehák, V., Strejček, J.: LTL to Büchi automata translation: fast and more deterministic. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 95–109. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28756-5_8

    Chapter  MATH  Google Scholar 

  2. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y., et al.: Bounded model checking. Adv. Comput. 58(11), 117–148 (2003)

    Article  Google Scholar 

  3. Bonakdarpour, B., Finkbeiner, B.: Program repair for hyperproperties. In: Chen, Y.-F., Cheng, C.-H., Esparza, J. (eds.) ATVA 2019. LNCS, vol. 11781, pp. 423–441. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31784-3_25

    Chapter  MATH  Google Scholar 

  4. Faymonville, P., Finkbeiner, B., Rabe, M.N., Tentrup, L.: Encodings of bounded synthesis. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 354–370. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54577-5_20

    Chapter  Google Scholar 

  5. Faymonville, P., Finkbeiner, B., Tentrup, L.: BoSy: an experimentation framework for bounded synthesis. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 325–332. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63390-9_17

    Chapter  Google Scholar 

  6. Finkbeiner, B., Jacobs, S.: Lazy synthesis. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 219–234. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27940-9_15

    Chapter  Google Scholar 

  7. Finkbeiner, B., Klein, F.: Bounded cycle synthesis. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp. 118–135. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41528-4_7

    Chapter  Google Scholar 

  8. Finkbeiner, B., Klein, F.: Reactive synthesis: towards output-sensitive algorithms. In: Pretschner, A., Peled, D., Hutzelmann, T. (eds.) Dependable Software Systems Engineering, Volume 50 of NATO Science for Peace and Security Series, D: Information and Communication Security, pp. 25–43. IOS Press (2017)

    Google Scholar 

  9. Finkbeiner, B., Schewe, S.: Bounded synthesis. Int. J. Softw. Tools Technol. Transf. 15(5–6), 519–539 (2013). https://doi.org/10.1007/s10009-012-0228-z

    Article  MATH  Google Scholar 

  10. Finkbeiner, B., Torfah, H.: Synthesizing skeletons for reactive systems. In: Artho, C., Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 271–286. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46520-3_18

    Chapter  MATH  Google Scholar 

  11. Jacobs, S., et al.: The 4th reactive synthesis competition (SYNTCOMP 2017): benchmarks, participants and results. In: SYNT 2017, Volume 260 of EPTCS, pp. 116–143 (2017)

    Google Scholar 

  12. Jacobs, S., et al.: The 5th reactive synthesis competition (SYNTCOMP 2018): benchmarks, participants & results. CoRR, abs/1904.07736 (2019)

    Google Scholar 

  13. Jobstmann, B., Griesmayer, A., Bloem, R.: Program repair as a game. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 226–238. Springer, Heidelberg (2005). https://doi.org/10.1007/11513988_23

    Chapter  Google Scholar 

  14. Kress-Gazit, H., Torfah, H.: The challenges in specifying and explaining synthesized implementations of reactive systems. In: Proceedings CREST@ETAPS, EPTCS, pp. 50–64 (2018)

    Google Scholar 

  15. Kupferman, O., Piterman, N., Vardi, M.Y.: Safraless compositional synthesis. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 31–44. Springer, Heidelberg (2006). https://doi.org/10.1007/11817963_6

    Chapter  Google Scholar 

  16. Nilsson, P., Ozay, N.: Incremental synthesis of switching protocols via abstraction refinement. In: 53rd IEEE Conference on Decision and Control, pp. 6246–6253 (2014)

    Google Scholar 

  17. Peter, H.J., Mattmüller, R.: Component-based abstraction refinement for timed controller synthesis. In: Baker, T. (ed.) Proceedings of the 30th IEEE Real-Time Systems Symposium, RTSS 2009, Washington, D.C., USA, 1–4 December 2009, pp. 364–374, Los Alamitos, CA, USA, December 2009. IEEE Computer Society (2009)

    Google Scholar 

  18. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. Automata Lang. Program. 372, 179–190 (1989)

    Article  MathSciNet  Google Scholar 

  19. Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th Annual Symposium on Foundations of Computer Science, SFCS 1977, USA, pp. 46–57. IEEE Computer Society (1977)

    Google Scholar 

  20. Reissig, G., Weber, A., Rungger, M.: Feedback refinement relations for the synthesis of symbolic controllers. IEEE Trans. Autom. Control 62(4), 1781–1796 (2017)

    Article  MathSciNet  Google Scholar 

  21. Ryzhyk, L., Walker, A.: Developing a practical reactive synthesis tool: experience and lessons learned. In: Piskac, R., Dimitrova, R. (eds.) Proceedings Fifth Workshop on Synthesis, SYNT@CAV 2016, Toronto, Canada, 17–18 July 2016, Volume 229 of EPTCS, pp. 84–99 (2016)

    Google Scholar 

  22. Sistla, A., Clarke, E.: The complexity of propositional linear temporal logics. J. ACM 32, 733–749 (1985)

    Article  MathSciNet  Google Scholar 

  23. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic problems. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 244–257. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02777-2_24

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Baumeister .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Baumeister, T., Finkbeiner, B., Torfah, H. (2020). Explainable Reactive Synthesis. In: Hung, D.V., Sokolsky, O. (eds) Automated Technology for Verification and Analysis. ATVA 2020. Lecture Notes in Computer Science(), vol 12302. Springer, Cham. https://doi.org/10.1007/978-3-030-59152-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59152-6_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59151-9

  • Online ISBN: 978-3-030-59152-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics