Skip to main content

Towards Assigning Diagnosis Codes Using Medication History

  • Conference paper
  • First Online:
Artificial Intelligence in Medicine (AIME 2020)

Abstract

Prior studies have manually assessed diagnosis codes and found them to be erroneous/incomplete between 4–30% of the time. Previous methods to validate and suggest missing codes from medical notes are limited in the absence of these, or when the notes are not written in English. In this work, we propose using patients’ medication data to suggest and validate diagnosis codes. Previous attempts to assign codes using medication data have focused on a single condition. We present a proof-of-concept study using MIMIC-III prescription data to train a machine-learning-based model to predict a large collection of diagnosis codes assigned on four levels of aggregation of the ICD-9 hierarchy. The model is able to correctly recall 58.2% of the ICD-9 categories and is precise in 78.3% of the cases. We evaluate the model’s performance on more detailed ICD-9 levels and examine which codes and code groups can be accurately assigned using medication data. We suggest a specialized loss function designed to utilize ICD-9’s natural hierarchical nature. It performs consistently better than the non-hierarchical state-of-the-art.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baumel, T., et al.: Multi-label classification of patient notes: case study on ICD code assignment. In: Workshops at the Thirty-Second AAAI Conference on Artificial Intelligence, June 2018. https://www.aaai.org/ocs/index.php/WS/AAAIW18/paper/viewPaper/16881

  2. Cerri, R., Barros, R.C., De Carvalho, A.C.: Hierarchical multi-label classification using local neural networks. J. Comput. Syst. Sci. 80(1), 39–56 (2014). https://doi.org/10.1016/j.jcss.2013.03.007

    Article  MathSciNet  MATH  Google Scholar 

  3. Cheng, X., Zhang, L., Zheng, Y.: Deep similarity learning for multimodal medical images. Comput. Meth. Biomech. Biomed. Eng. Imaging Vis. 6(3), 248–252 (2018)

    Article  Google Scholar 

  4. Cooke, C.R., et al.: The validity of using ICD-9 codes and pharmacy records to identify patients with chronic obstructive pulmonary disease. BMC Health Serv. Res. 11(1), 37 (2011)

    Article  Google Scholar 

  5. Dalsgaard, E.M., Witte, D.R., Charles, M., Jørgensen, M.E., Lauritzen, T., Sandbæk, A.: Validity of Danish register diagnoses of myocardial infarction and stroke against experts in people with screen-detected diabetes. BMC Public Health 19(1), 228 (2019). https://doi.org/10.1186/s12889-019-6549-z

    Article  Google Scholar 

  6. Davie, G., Langley, J., Samaranayaka, A., Wetherspoon, M.E.: Accuracy of injury coding under ICD-10-AM for New Zealand public hospital discharges. Inj. Prev. 14(5), 319–323 (2008). https://doi.org/10.1136/ip.2007.017954

    Article  Google Scholar 

  7. Fabris, F., Freitas, A.A., Tullet, J.M.: An extensive empirical comparison of probabilistic hierarchical classifiers in datasets of ageing-related genes. IEEE/ACM Trans. Comput. Biol. Bioinform. 13(6), 1045–1058 (2016). https://doi.org/10.1109/TCBB.2015.2505288

    Article  Google Scholar 

  8. Ford, E., Carroll, J.A., Smith, H.E., Scott, D., Cassell, J.A.: Extracting information from the text of electronic medical records to improve case detection: a systematic review. J. Am. Med. Inf. Assoc. 23(5), 1007–1015 (2016). https://doi.org/10.1093/jamia/ocv180

    Article  Google Scholar 

  9. Goldberger, A.L., et al.: Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000)

    Article  Google Scholar 

  10. Hansen, E.R., Sagi, T., Hose, K., Lip, G.Y.H., Larsen, T.B., Skjøth, F.: MIMIC Prescriptions result files (2020). https://doi.org/10.7910/DVN/5VTBME

  11. Hripcsak, G., et al.: Observational health data sciences and informatics (OHDSI): opportunities for observational researchers. Stud. Health Technol. Inf. 216, 574–8 (2015)

    Google Scholar 

  12. Huang, J., Osorio, C., Sy, L.W.: An empirical evaluation of deep learning for ICD-9 code assignment using MIMIC-III clinical notes. Comput. Methods Programs Biomed. 177, 141–153 (2019). https://doi.org/10.1016/j.cmpb.2019.05.024

    Article  Google Scholar 

  13. Hung, C.Y., Chen, W.C., Lai, P.T., Lin, C.H., Lee, C.C.: Comparing deep neural network and other machine learning algorithms for stroke prediction in a large-scale population-based electronic medical claims database. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, pp. 3110–3113. Institute of Electrical and Electronics Engineers Inc. September 2017. https://doi.org/10.1109/EMBC.2017.8037515

  14. Johnson, A.E., et al.: MIMIC-III, a freely accessible critical care database. Sci. Data 3(1), 1–9 (2016)

    Article  Google Scholar 

  15. Kim, L., Kim, J.A., Kim, S.: A guide for the utilization of health insurance review and assessment service national patient samples. Epidemiol. Health 36, e2014008 (2014). https://doi.org/10.4178/epih/e2014008

    Article  Google Scholar 

  16. Martins, A.F.T., Astudillo, R.F.: From softmax to sparsemax: a sparse model of attention and multi-label classification. In: Balcan, M., Weinberger, K.Q. (eds.) Proceedings of the 33nd International Conference on Machine Learning, ICML 2016, New York City, USA, 19–24 June 2016. JMLR Workshop and Conference Proceedings, vol. 48, pp. 1614–1623. JMLR.org (2016). http://proceedings.mlr.press/v48/martins16.html

  17. Névéol, A., Dalianis, H., Velupillai, S., Savova, G., Zweigenbaum, P.: Clinical natural language processing in languages other than English: opportunities and challenges. J. Biomed. Semant 9(1), 12 (2018). https://doi.org/10.1186/s13326-018-0179-8

    Article  Google Scholar 

  18. Perotte, A., et al.: Diagnosis code assignment: models and evaluation metrics. J. Am. Med. Inf. Assoc. 21(2), 231–237 (2014). https://doi.org/10.1136/amiajnl-2013-002159

    Article  Google Scholar 

  19. Razavian, N., Marcus, J., Sontag, D.A.: Multi-task prediction of disease onsets from longitudinal laboratory tests. In: Doshi-Velez, F., Fackler, J., Kale, D.C., Wallace, B.C., Wiens, J. (eds.) Proceedings of the 1st Machine Learning in Health Care, MLHC 2016, Los Angeles, CA, USA, 19–20 August 2016. JMLR Workshop and Conference Proceedings, vol. 56, pp. 73–100. JMLR.org (2016). http://proceedings.mlr.press/v56/Razavian16.html

  20. Schmidt, M., et al.: The Danish health care system and epidemiological research: from health care contacts to database records. Clin. Epidemiol. 11, 563–591 (2019). https://doi.org/10.2147/CLEP.S179083

    Article  Google Scholar 

  21. Schmidt, M., Sørensen, H.T., Pedersen, L.: Diclofenac use and cardiovascular risks: series of nationwide cohort studies. BMJ 362, k3426 (2018). https://doi.org/10.1136/bmj.k3426

    Article  Google Scholar 

  22. Schmidt, S.A., Vestergaard, M., Baggesen, L.M., Pedersen, L., Schønheyder, H.C., Sørensen, H.T.: Prevaccination epidemiology of herpes zoster in Denmark: quantification of occurrence and risk factors. Vaccine 35(42), 5589–5596 (2017). https://doi.org/10.1016/j.vaccine.2017.08.065

    Article  Google Scholar 

  23. Wang, Y., et al.: Clinical information extraction applications: a literature review. J. Biomed. Inf. 77, 34–49 (2018). https://doi.org/10.1016/j.jbi.2017.11.011

    Article  Google Scholar 

  24. Wehrmann, J., Cerri, R., Barros, R.: Hierarchical multi-label classification networks. In: Dy, J., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 80, pp. 5075–5084. PMLR, Stockholmsmässan, Stockholm Sweden (2018). http://proceedings.mlr.press/v80/wehrmann18a.html

  25. WHO: International Statistical Classification of Diseases and Related Health Problems, 10th Revision (ICD-10). Technical report., World Health Organization, Geneva, Switzerland (2004)

    Google Scholar 

  26. Wockenfuss, R., Frese, T., Herrmann, K., Claussnitzer, M., Sandholzer, H.: Three- and four-digit ICD-10 is not a reliable classification system in primary care. Scand. J. Prim. Health Care 27(3), 131–136 (2009). https://doi.org/10.1080/02813430903072215

    Article  Google Scholar 

  27. Xu, D., Shi, Y., Tsang, I.W., Ong, Y., Gong, C., Shen, X.: Survey on multi-output learning. IEEE Trans. Neural Netw. Learn. Syst. (Early Access), 1–21 (2019)

    Google Scholar 

  28. Zhang, M.L., Zhou, Z.H.: A review on multi-label learning algorithms. IEEE Trans. Knowl. Data Eng. 26(8), 1819–1837 (2014). https://doi.org/10.1109/TKDE.2013.39

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomer Sagi .

Editor information

Editors and Affiliations

A Appendix - Omitted codes and detailed results

A Appendix - Omitted codes and detailed results

Table 2 details the ommitted ocdes from the diagnosis table and the reasons for omission. We omit all codes with a low number of cases. We further omit 61 codes used to describe symptoms, as these are shared by multiple causes and will, most-probably, supplant a diagnosis code following medical investigation. Injuries and foreign bodies (30 codes) are omitted as well as their treatment is usually orthopedic or surgical, rather than medicinal. We omit the codes used in ICD-9 to classify birth-age and pre-term phase for infants (14 codes) as these are more descriptive than diagnostic. Finally, we omit the E and V series of codes that are used to provide additional details for statistical reasons and which do not cause differences in medicinal treatment. We remain with 567 codes and 54,423 cases (92.4%) that contain at least one of the remaining codes. Filtering out only admissions contained in both the diagnosis and prescription tables we remain with 50,211 admissions.

Table 2. List of Omitted ICD-9 Codes and Code Groups

Detailed results are available online [10].

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sagi, T., Hansen, E.R., Hose, K., Lip, G.Y.H., Bjerregaard Larsen, T., Skjøth, F. (2020). Towards Assigning Diagnosis Codes Using Medication History. In: Michalowski, M., Moskovitch, R. (eds) Artificial Intelligence in Medicine. AIME 2020. Lecture Notes in Computer Science(), vol 12299. Springer, Cham. https://doi.org/10.1007/978-3-030-59137-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59137-3_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59136-6

  • Online ISBN: 978-3-030-59137-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics