Skip to main content

The Tumor Microenvironment of Bladder Cancer

  • Chapter
  • First Online:
Tumor Microenvironments in Organs

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1296))

Abstract

Bladder cancer has been well known as immunotherapy-responsive disease as intravesical therapy with BCG has been the standard of care for non-muscle invasive disease for several decades. In addition, immune checkpoint inhibitors have dramatically changed the treatment of metastatic bladder cancer. However, only a small fraction of patients with bladder cancer can benefit from these therapies. As immunotherapies act on the tumor microenvironment, understanding it is essential to expand the efficacy of modern treatments. The bladder cancer microenvironment consists of various components including tumor cells, immune cells, and other stromal cells, affecting each other via immune checkpoint molecules, cytokines, and chemokines. The development of an antitumor immune response depends on tumor antigen recognition by antigen presenting cells and priming and recruitment of effector T cells. Accumulated evidence shows that these processes are impacted by multiple types of immune cells in the tumor microenvironment including regulatory T cells, tumor-associated macrophages, and myeloid derived suppressor cells. In addition, recent advances in genomic profiling have shed light on the relationship between molecular subtypes and the tumor microenvironment. Finally, emerging evidence has shown that multiple factors can impact the tumor microenvironment in bladder cancer, including tumor-oncogenic signaling, patient genetics, and the commensal microbiome.

Declaration of Financial/Other Relationships: R.F.S. reports consulting/honoraria from Aduro, AstraZeneca, BMS, Exelixis, Eisai, Mirati, Puma, and Medscape. R.F.S. reports research support (to institution) from Abbvie, Bayer, BMS, CytomX, Eisai, Genentech/Roche, Novartis, and Merck. K.H. reports fellowship funding from Japan Cancer Society. K.H. is currently a JSPS Overseas Research Fellow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A (2018) Cancer statistics, 2018. CA Cancer J Clin 68(1):7–30. Epub 2018/01/10. https://doi.org/10.3322/caac.21442

    Article  PubMed  Google Scholar 

  2. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(5):E359–E386. Epub 2014/09/16. https://doi.org/10.1002/ijc.29210

    Article  CAS  PubMed  Google Scholar 

  3. Moch H, Humphrey P, Ulbright T, Reuter V (2016) WHO classification of tumours of the urinary system and male genital organs-WHO classification of tumours, vol 8, 4th edn. IARC Press, Lyon

    Google Scholar 

  4. The Cancer Genome Atlas Research Network (2014) Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 507(7492):315–322. https://doi.org/10.1038/nature12965. Epub 2014/01/31. PubMed PMID: 24476821; PMCID: PMC3962515

  5. Choi W, Porten S, Kim S, Willis D, Plimack ER, Hoffman-Censits J, Roth B, Cheng T, Tran M, Lee IL, Melquist J, Bondaruk J, Majewski T, Zhang S, Pretzsch S, Baggerly K, Siefker-Radtke A, Czerniak B, Dinney CP, McConkey DJ (2014) Identification of distinct basal and luminal subtypes of muscle-invasive bladder cancer with different sensitivities to frontline chemotherapy. Cancer Cell 25(2):152–165. https://doi.org/10.1016/j.ccr.2014.01.009. Epub 2014/02/15. PubMed PMID: 24525232; PMCID: PMC4011497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hedegaard J, Lamy P, Nordentoft I, Algaba F, Hoyer S, Ulhoi BP, Vang S, Reinert T, Hermann GG, Mogensen K, MBH T, Nielsen MM, Marquez M, Segersten U, Aine M, Hoglund M, Birkenkamp-Demtroder K, Fristrup N, Borre M, Hartmann A, Stohr R, Wach S, Keck B, Seitz AK, Nawroth R, Maurer T, Tulic C, Simic T, Junker K, Horstmann M, Harving N, Petersen AC, Calle ML, Steyerberg EW, Beukers W, van Kessel KEM, Jensen JB, Pedersen JS, Malmstrom PU, Malats N, Real FX, Zwarthoff EC, Orntoft TF, Dyrskjot L (2016) Comprehensive transcriptional analysis of early-stage urothelial carcinoma. Cancer Cell 30(1):27–42. https://doi.org/10.1016/j.ccell.2016.05.004. Epub 2016/06/21

    Article  CAS  PubMed  Google Scholar 

  7. Robertson AG, Kim J, Al-Ahmadie H, Bellmunt J, Guo G, Cherniack AD, Hinoue T, Laird PW, Hoadley KA, Akbani R, MAA C, Gibb EA, Kanchi RS, Gordenin DA, Shukla SA, Sanchez-Vega F, Hansel DE, Czerniak BA, Reuter VE, Su X, de Sa Carvalho B, Chagas VS, Mungall KL, Sadeghi S, Pedamallu CS, Lu Y, Klimczak LJ, Zhang J, Choo C, Ojesina AI, Bullman S, Leraas KM, Lichtenberg TM, Wu CJ, Schultz N, Getz G, Meyerson M, Mills GB, McConkey DJ, Weinstein JN, Kwiatkowski DJ, Lerner SP (2017) Comprehensive molecular characterization of muscle-invasive bladder cancer. Cell 171(3):540–56.e25. https://doi.org/10.1016/j.cell.2017.09.007. Epub 2017/10/11. PubMed PMID: 28988769; PMCID: PMC5687509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Martinez-Pineiro JA, Jimenez Leon J, Martinez-Pineiro L Jr, Fiter L, Mosteiro JA, Navarro J, Garcia Matres MJ, Carcamo P (1990) Bacillus Calmette-Guerin versus doxorubicin versus thiotepa: a randomized prospective study in 202 patients with superficial bladder cancer. J Urol 143(3):502–506. Epub 1990/03/01. https://doi.org/10.1016/s0022-5347(17)40002-4

    Article  CAS  PubMed  Google Scholar 

  9. Bohle A, Bock PR (2004) Intravesical bacille Calmette-Guerin versus mitomycin C in superficial bladder cancer: formal meta-analysis of comparative studies on tumor progression. Urology 63(4):682–686.; Discussion 6-7. Epub 2004/04/10. https://doi.org/10.1016/j.urology.2003.11.049

    Article  CAS  PubMed  Google Scholar 

  10. de Reijke TM, Kurth KH, Sylvester RJ, Hall RR, Brausi M, van de Beek K, Landsoght KE, Carpentier P (2005) Bacillus Calmette-Guerin versus epirubicin for primary, secondary or concurrent carcinoma in situ of the bladder: results of a European Organization for the Research and Treatment of Cancer-Genito-Urinary Group Phase III Trial (30906). J Urol 173(2):405–409. Epub 2005/01/12. https://doi.org/10.1097/01.ju.0000150425.09317.67

    Article  CAS  PubMed  Google Scholar 

  11. Sylvester RJ, van der Meijden AP, Witjes JA, Kurth K (2005) Bacillus calmette-guerin versus chemotherapy for the intravesical treatment of patients with carcinoma in situ of the bladder: a meta-analysis of the published results of randomized clinical trials. J Urol 174(1):86–91. Discussion −2. Epub 2005/06/11. https://doi.org/10.1097/01.ju.0000162059.64886.1c

    Article  CAS  PubMed  Google Scholar 

  12. Mungan NA, Witjes JA (1998) Bacille Calmette-Guerin in superficial transitional cell carcinoma. Br J Urol 82(2):213–223. Epub 1998/09/02. https://doi.org/10.1046/j.1464-410x.1998.00720.x

    Article  CAS  PubMed  Google Scholar 

  13. Prescott S, Jackson AM, Hawkyard SJ, Alexandroff AB, James K (2000) Mechanisms of action of intravesical bacille Calmette-Guerin: local immune mechanisms. Clin Infect Dis 31(Suppl 3):S91–S93. Epub 2000/09/30. https://doi.org/10.1086/314066

    Article  CAS  PubMed  Google Scholar 

  14. Bohle A, Brandau S (2003) Immune mechanisms in bacillus Calmette-Guerin immunotherapy for superficial bladder cancer. J Urol 170(3):964–969. Epub 2003/08/13. https://doi.org/10.1097/01.ju.0000073852.24341.4a

    Article  PubMed  Google Scholar 

  15. Redelman-Sidi G, Glickman MS, Bochner BH (2014) The mechanism of action of BCG therapy for bladder cancer-a current perspective. Nat Rev Urol 11(3):153–162. Epub 2014/02/05. https://doi.org/10.1038/nrurol.2014.15

    Article  CAS  PubMed  Google Scholar 

  16. Bellmunt J, de Wit R, Vaughn DJ, Fradet Y, Lee JL, Fong L, Vogelzang NJ, Climent MA, Petrylak DP, Choueiri TK, Necchi A, Gerritsen W, Gurney H, Quinn DI, Culine S, Sternberg CN, Mai Y, Poehlein CH, Perini RF, Bajorin DF (2017) Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N Engl J Med 376(11):1015–1026. https://doi.org/10.1056/NEJMoa1613683. Epub 2017/02/18. PubMed PMID: 28212060; PMCID: PMC5635424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Powles T, Duran I, van der Heijden MS, Loriot Y, Vogelzang NJ, De Giorgi U, Oudard S, Retz MM, Castellano D, Bamias A, Flechon A, Gravis G, Hussain S, Takano T, Leng N, Kadel EE 3rd, Banchereau R, Hegde PS, Mariathasan S, Cui N, Shen X, Derleth CL, Green MC, Ravaud A (2018) Atezolizumab versus chemotherapy in patients with platinum-treated locally advanced or metastatic urothelial carcinoma (IMvigor211): a multicentre, open-label, phase 3 randomised controlled trial. Lancet 391(10122):748–757. https://doi.org/10.1016/s0140-6736(17)33297-x. Epub 2017/12/23

    Article  CAS  PubMed  Google Scholar 

  18. Apolo AB, Infante JR, Balmanoukian A, Patel MR, Wang D, Kelly K, Mega AE, Britten CD, Ravaud A, Mita AC, Safran H, Stinchcombe TE, Srdanov M, Gelb AB, Schlichting M, Chin K, Gulley JL (2017) Avelumab, an anti-programmed death-ligand 1 antibody, in patients with refractory metastatic urothelial carcinoma: results from a multicenter, phase IB study. J Clin Oncol 35(19):2117–2124. https://doi.org/10.1200/jco.2016.71.6795. Epub 2017/04/05. PubMed PMID: 28375787; PMCID: PMC5493051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Powles T, O’Donnell PH, Massard C, Arkenau HT, Friedlander TW, Hoimes CJ, Lee JL, Ong M, Sridhar SS, Vogelzang NJ, Fishman MN, Zhang J, Srinivas S, Parikh J, Antal J, Jin X, Gupta AK, Ben Y, Hahn NM (2017) Efficacy and safety of durvalumab in locally advanced or metastatic urothelial carcinoma: updated results from a phase 1/2 open-label study. JAMA Oncol 3(9):e172411. https://doi.org/10.1001/jamaoncol.2017.2411. Epub 2017/08/18. PubMed PMID: 28817753; PMCID: PMC5824288

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sharma P, Retz M, Siefker-Radtke A, Baron A, Necchi A, Bedke J, Plimack ER, Vaena D, Grimm MO, Bracarda S, Arranz JA, Pal S, Ohyama C, Saci A, Qu X, Lambert A, Krishnan S, Azrilevich A, Galsky MD (2017) Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): a multicentre, single-arm, phase 2 trial. Lancet Oncol 18(3):312–322. Epub 2017/01/31. https://doi.org/10.1016/s1470-2045(17)30065-7

    Article  CAS  PubMed  Google Scholar 

  21. Balar AV, Castellano D, O’Donnell PH, Grivas P, Vuky J, Powles T, Plimack ER, Hahn NM, de Wit R, Pang L, Savage MJ, Perini RF, Keefe SM, Bajorin D, Bellmunt J (2017) First-line pembrolizumab in cisplatin-ineligible patients with locally advanced and unresectable or metastatic urothelial cancer (KEYNOTE-052): a multicentre, single-arm, phase 2 study. Lancet Oncol 18(11):1483–1492. Epub 2017/10/03. https://doi.org/10.1016/s1470-2045(17)30616-2

    Article  CAS  PubMed  Google Scholar 

  22. Balar AV, Galsky MD, Rosenberg JE, Powles T, Petrylak DP, Bellmunt J, Loriot Y, Necchi A, Hoffman-Censits J, Perez-Gracia JL, Dawson NA, van der Heijden MS, Dreicer R, Srinivas S, Retz MM, Joseph RW, Drakaki A, Vaishampayan UN, Sridhar SS, Quinn DI, Duran I, Shaffer DR, Eigl BJ, Grivas PD, Yu EY, Li S, Kadel EE 3rd, Boyd Z, Bourgon R, Hegde PS, Mariathasan S, Thastrom A, Abidoye OO, Fine GD, Bajorin DF (2017) Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2 trial. Lancet 389(10064):67–76. https://doi.org/10.1016/s0140-6736(16)32455-2. Epub 2016/12/13. PubMed PMID: 27939400; PMCID: PMC5568632

    Article  CAS  PubMed  Google Scholar 

  23. Harlin H, Meng Y, Peterson AC, Zha Y, Tretiakova M, Slingluff C, McKee M, Gajewski TF (2009) Chemokine expression in melanoma metastases associated with CD8+ T-cell recruitment. Cancer Res 69(7):3077–3085. https://doi.org/10.1158/0008-5472.CAN-08-2281. PubMed PMID: 19293190; PMCID: 3886718

    Article  CAS  PubMed  Google Scholar 

  24. Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12(4):252–264. https://doi.org/10.1038/nrc3239. Epub 2012/03/23. PubMed PMID: 22437870; PMCID: PMC4856023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zou W, Chen L (2008) Inhibitory B7-family molecules in the tumour microenvironment. Nat Rev Immunol 8(6):467–477. Epub 2008/05/27. https://doi.org/10.1038/nri2326

    Article  CAS  PubMed  Google Scholar 

  26. Gajewski TF, Louahed J, Brichard VG (2010) Gene signature in melanoma associated with clinical activity: a potential clue to unlock cancer immunotherapy. Cancer J 16(4):399–403. https://doi.org/10.1097/PPO.0b013e3181eacbd8

    Article  CAS  PubMed  Google Scholar 

  27. Senbabaoglu Y, Gejman RS, Winer AG, Liu M, Van Allen EM, de Velasco G, Miao D, Ostrovnaya I, Drill E, Luna A, Weinhold N, Lee W, Manley BJ, Khalil DN, Kaffenberger SD, Chen Y, Danilova L, Voss MH, Coleman JA, Russo P, Reuter VE, Chan TA, Cheng EH, Scheinberg DA, Li MO, Choueiri TK, Hsieh JJ, Sander C, Hakimi AA (2016) Tumor immune microenvironment characterization in clear cell renal cell carcinoma identifies prognostic and immunotherapeutically relevant messenger RNA signatures. Genome Biol 17(1):231. https://doi.org/10.1186/s13059-016-1092-z. Epub 2016/11/20. PubMed PMID: 27855702; PMCID: PMC5114739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ayers M, Lunceford J, Nebozhyn M, Murphy E, Loboda A, Kaufman DR, Albright A, Cheng JD, Kang SP, Shankaran V, Piha-Paul SA, Yearley J, Seiwert TY, Ribas A, McClanahan TK (2017) IFN-gamma-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest 127(8):2930–2940. https://doi.org/10.1172/jci91190. Epub 2017/06/27. PubMed PMID: 28650338; PMCID: PMC5531419

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sweis RF, Spranger S, Bao R, Paner GP, Stadler WM, Steinberg G, Gajewski TF (2016) Molecular drivers of the non-t-cell-inflamed tumor microenvironment in urothelial bladder cancer. Cancer Immunol Res 4(7):563–568. https://doi.org/10.1158/2326-6066.CIR-15-0274. PubMed PMID: 27197067; PMCID: 4943758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Faraj SF, Munari E, Guner G, Taube J, Anders R, Hicks J, Meeker A, Schoenberg M, Bivalacqua T, Drake C, Netto GJ (2015) Assessment of tumoral PD-L1 expression and intratumoral CD8+ T cells in urothelial carcinoma. Urology 85(3):703 e1–703 e6. https://doi.org/10.1016/j.urology.2014.10.020. Epub 2015/03/04. PubMed PMID: 25733301; PMCID: PMC4695997

    Article  Google Scholar 

  31. Sharma P, Shen Y, Wen S, Yamada S, Jungbluth AA, Gnjatic S, Bajorin DF, Reuter VE, Herr H, Old LJ, Sato E (2007) CD8 tumor-infiltrating lymphocytes are predictive of survival in muscle-invasive urothelial carcinoma. Proc Natl Acad Sci U S A 104(10):3967–3972. https://doi.org/10.1073/pnas.0611618104. Epub 2007/03/16. PubMed PMID: 17360461; PMCID: PMC1820692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Krpina K, Babarovic E, Jonjic N (2015) Correlation of tumor-infiltrating lymphocytes with bladder cancer recurrence in patients with solitary low-grade urothelial carcinoma. Virchows Arch 467(4):443–448. Epub 2015/07/29. https://doi.org/10.1007/s00428-015-1808-6

    Article  CAS  PubMed  Google Scholar 

  33. Wang B, Pan W, Yang M, Yang W, He W, Chen X, Bi J, Jiang N, Huang J, Lin T (2019) Programmed death ligand-1 is associated with tumor infiltrating lymphocytes and poorer survival in urothelial cell carcinoma of the bladder. Cancer Sci 110(2):489–498. https://doi.org/10.1111/cas.13887. Epub 2018/12/15. PubMed PMID: 30548363; PMCID: PMC6361576

    Article  CAS  PubMed  Google Scholar 

  34. Hartana CA, Ahlen Bergman E, Broome A, Berglund S, Johansson M, Alamdari F, Jakubczyk T, Huge Y, Aljabery F, Palmqvist K, Holmstrom B, Glise H, Riklund K, Sherif A, Winqvist O (2018) Tissue-resident memory T cells are epigenetically cytotoxic with signs of exhaustion in human urinary bladder cancer. Clin Exp Immunol 194(1):39–53. https://doi.org/10.1111/cei.13183. Epub 2018/07/17. PubMed PMID: 30009527; PMCID: PMC6156818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ding X, Chen Q, Yang Z, Li J, Zhan H, Lu N, Chen M, Yang Y, Wang J, Yang D (2019) Clinicopathological and prognostic value of PD-L1 in urothelial carcinoma: a meta-analysis. Cancer Manag Res 11:4171–4184. https://doi.org/10.2147/cmar.S176937. Epub 2019/06/14. PubMed PMID: 31190987; PMCID: PMC6512637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhu L, Sun J, Wang L, Li Z, Wang L, Li Z (2019) Prognostic and clinicopathological significance of PD-L1 in patients with bladder cancer: a meta-analysis. Front Pharmacol 10:962. https://doi.org/10.3389/fphar.2019.00962. Epub 2019/10/17. PubMed PMID: 31616289; PMCID: PMC6763705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gardner A, Ruffell B (2016) Dendritic cells and cancer immunity. Trends Immunol 37(12):855–865. https://doi.org/10.1016/j.it.2016.09.006. Epub 2016/10/30. PubMed PMID: 27793569; PMCID: PMC5135568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wculek SK, Cueto FJ, Mujal AM, Melero I, Krummel MF, Sancho D (2019) Dendritic cells in cancer immunology and immunotherapy. Nat Rev Immunol. Epub 2019/08/31. https://doi.org/10.1038/s41577-019-0210-z

  39. Bottcher JP, Bonavita E, Chakravarty P, Blees H, Cabeza-Cabrerizo M, Sammicheli S, Rogers NC, Sahai E, Zelenay S, Reis e Sousa C (2018) NK Cells Stimulate Recruitment of cDC1 into the Tumor Microenvironment Promoting Cancer Immune Control. Cell 172(5):1022–1037.e14. https://doi.org/10.1016/j.cell.2018.01.004. Epub 2018/02/13. PubMed PMID: 29429633; PMCID: PMC5847168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Spranger S, Dai D, Horton B, Gajewski TF (2017) Tumor-residing Batf3 dendritic cells are required for effector T cell trafficking and adoptive T cell therapy. Cancer Cell 31(5):711–23 e4. https://doi.org/10.1016/j.ccell.2017.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Spranger S, Bao R, Gajewski TF (2015) Melanoma-intrinsic beta-catenin signalling prevents anti-tumour immunity. Nature 523(7559):231–235. https://doi.org/10.1038/nature14404

    Article  CAS  PubMed  Google Scholar 

  42. Broz ML, Binnewies M, Boldajipour B, Nelson AE, Pollack JL, Erle DJ, Barczak A, Rosenblum MD, Daud A, Barber DL, Amigorena S, Van’t Veer LJ, Sperling AI, Wolf DM, Krummel MF (2014) Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity. Cancer Cell 26(5):638–652. https://doi.org/10.1016/j.ccell.2014.09.007. Epub 2014/12/03. PubMed PMID: 25446897; PMCID: PMC4254577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Michea P, Noel F, Zakine E, Czerwinska U, Sirven P, Abouzid O, Goudot C, Scholer-Dahirel A, Vincent-Salomon A, Reyal F, Amigorena S, Guillot-Delost M, Segura E, Soumelis V (2018) Adjustment of dendritic cells to the breast-cancer microenvironment is subset specific. Nat Immunol 19(8):885–897. Epub 2018/07/18. https://doi.org/10.1038/s41590-018-0145-8

    Article  CAS  PubMed  Google Scholar 

  44. Talmadge JE, Donkor M, Scholar E (2007) Inflammatory cell infiltration of tumors: Jekyll or Hyde. Cancer Metastasis Rev 26(3–4):373–400. Epub 2007/08/25. https://doi.org/10.1007/s10555-007-9072-0

    Article  PubMed  Google Scholar 

  45. Ayari C, LaRue H, Hovington H, Decobert M, Harel F, Bergeron A, Tetu B, Lacombe L, Fradet Y (2009) Bladder tumor infiltrating mature dendritic cells and macrophages as predictors of response to bacillus Calmette-Guerin immunotherapy. Eur Urol 55(6):1386–1395. Epub 2009/02/06. https://doi.org/10.1016/j.eururo.2009.01.040

    Article  CAS  PubMed  Google Scholar 

  46. Videira PA, Calais FM, Correia M, Ligeiro D, Crespo HJ, Calais F, Trindade H (2009) Efficacy of bacille Calmette-Guerin immunotherapy predicted by expression of antigen-presenting molecules and chemokines. Urology 74(4):944–950. Epub 2009/05/12. https://doi.org/10.1016/j.urology.2009.02.053

    Article  PubMed  Google Scholar 

  47. Hatogai K, Kim D, Zha Y, Steinberg GD, Pearson AT, Gajewski TF, Sweis RF (2019) Multichannel immunofluorescence imaging to assess the immune composition of tumor microenvironment in bladder cancer. Cancer Res 79(13 Suppl) Abstract number 1093

    Google Scholar 

  48. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M (1995) Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155(3):1151–1164. Epub 1995/08/01

    CAS  PubMed  Google Scholar 

  49. Miyara M, Sakaguchi S (2011) Human FoxP3(+)CD4(+) regulatory T cells: their knowns and unknowns. Immunol Cell Biol 89(3):346–351. Epub 2011/02/09. https://doi.org/10.1038/icb.2010.137

    Article  CAS  PubMed  Google Scholar 

  50. Togashi Y, Shitara K, Nishikawa H (2019) Regulatory T cells in cancer immunosuppression – implications for anticancer therapy. Nat Rev Clin Oncol 16(6):356–371. Epub 2019/02/02. https://doi.org/10.1038/s41571-019-0175-7

  51. Liu YN, Zhang H, Zhang L, Cai TT, Huang DJ, He J, Ni HH, Zhou FJ, Zhang XS, Li J (2019) Sphingosine 1 phosphate receptor-1 (S1P1) promotes tumor-associated regulatory T cell expansion: leading to poor survival in bladder cancer. Cell Death Dis 10(2):50. https://doi.org/10.1038/s41419-018-1298-y. Epub 2019/02/06. PubMed PMID: 30718502; PMCID: PMC6362099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tada Y, Togashi Y, Kotani D, Kuwata T, Sato E, Kawazoe A, Doi T, Wada H, Nishikawa H, Shitara K (2018) Targeting VEGFR2 with Ramucirumab strongly impacts effector/ activated regulatory T cells and CD8(+) T cells in the tumor microenvironment. J Immunother Cancer 6(1):106. https://doi.org/10.1186/s40425-018-0403-1. Epub 2018/10/14. PubMed PMID: 30314524; PMCID: PMC6186121

    Article  PubMed  PubMed Central  Google Scholar 

  53. Loskog A, Ninalga C, Paul-Wetterberg G, de la Torre M, Malmstrom PU, Totterman TH (2007) Human bladder carcinoma is dominated by T-regulatory cells and Th1 inhibitory cytokines. J Urol 177(1):353–358. Epub 2006/12/13. https://doi.org/10.1016/j.juro.2006.08.078

    Article  PubMed  Google Scholar 

  54. Zou W (2006) Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 6(4):295–307. Epub 2006/03/25. https://doi.org/10.1038/nri1806

    Article  CAS  PubMed  Google Scholar 

  55. Winerdal ME, Krantz D, Hartana CA, Zirakzadeh AA, Linton L, Bergman EA, Rosenblatt R, Vasko J, Alamdari F, Hansson J, Holmstrom B, Johansson M, Winerdal M, Marits P, Sherif A, Winqvist O (2018) Urinary bladder cancer tregs suppress MMP2 and potentially regulate invasiveness. Cancer Immunol Res 6(5):528–538. Epub 2018/03/29. https://doi.org/10.1158/2326-6066.Cir-17-0466

    Article  CAS  PubMed  Google Scholar 

  56. Mirocha S, Elagin RB, Salamat S, Jaume JC (2009) T regulatory cells distinguish two types of primary hypophysitis. Clin Exp Immunol 155(3):403–411. https://doi.org/10.1111/j.1365-2249.2008.03828.x. Epub 2008/12/17. PubMed PMID: 19077086; PMCID: PMC2669516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tanaka A, Sakaguchi S (2017) Regulatory T cells in cancer immunotherapy. Cell Res 27(1):109–118. https://doi.org/10.1038/cr.2016.151. Epub 2016/12/21. PubMed PMID: 27995907; PMCID: PMC5223231

    Article  CAS  PubMed  Google Scholar 

  58. Alvaro T, Lejeune M, Salvado MT, Bosch R, Garcia JF, Jaen J, Banham AH, Roncador G, Montalban C, Piris MA (2005) Outcome in Hodgkin’s lymphoma can be predicted from the presence of accompanying cytotoxic and regulatory T cells. Clin Cancer Res 11(4):1467–1473. Epub 2005/03/05. https://doi.org/10.1158/1078-0432.Ccr-04-1869

    Article  PubMed  Google Scholar 

  59. Miyake M, Tatsumi Y, Gotoh D, Ohnishi S, Owari T, Iida K, Ohnishi K, Hori S, Morizawa Y, Itami Y, Nakai Y, Inoue T, Anai S, Torimoto K, Aoki K, Shimada K, Konishi N, Tanaka N, Fujimoto K (2017) Regulatory T cells and tumor-associated macrophages in the tumor microenvironment in non-muscle invasive bladder cancer treated with intravesical bacille calmette-guerin: a long-term follow-up study of a Japanese cohort. Int J Mol Sci 18(10). https://doi.org/10.3390/ijms18102186. Epub 2017/10/20. PubMed PMID: 29048388; PMCID: PMC5666867

  60. Murai R, Itoh Y, Kageyama S, Nakayama M, Ishigaki H, Teramoto K, Narita M, Yoshida T, Tomita K, Kobayashi KI, Wada A, Nagasawa M, Kubota S, Ogasawara K, Kawauchi A (2018) Prediction of intravesical recurrence of non-muscle-invasive bladder cancer by evaluation of intratumoral Foxp3+ T cells in the primary transurethral resection of bladder tumor specimens. PLoS One 13(9):e0204745. https://doi.org/10.1371/journal.pone.0204745. Epub 2018/09/28. PubMed PMID: 30261082; PMCID: PMC6160186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tsai YS, Jou YC, Tung CL, Lin CT, Shen CH, Chen SY, Tsai HT, Lai CL, Wu CL, Tzai TS (2014) Loss of nuclear prothymosin-alpha expression is associated with disease progression in human superficial bladder cancer. Virchows Arch 464(6):717–724. Epub 2014/04/16. https://doi.org/10.1007/s00428-014-1578-6

    Article  CAS  PubMed  Google Scholar 

  62. Winerdal ME, Marits P, Winerdal M, Hasan M, Rosenblatt R, Tolf A, Selling K, Sherif A, Winqvist O (2011) FOXP3 and survival in urinary bladder cancer. BJU Int 108(10):1672–1678. Epub 2011/01/20. https://doi.org/10.1111/j.1464-410X.2010.10020.x

    Article  CAS  PubMed  Google Scholar 

  63. Baras AS, Drake C, Liu JJ, Gandhi N, Kates M, Hoque MO, Meeker A, Hahn N, Taube JM, Schoenberg MP, Netto G, Bivalacqua TJ (2016) The ratio of CD8 to Treg tumor-infiltrating lymphocytes is associated with response to cisplatin-based neoadjuvant chemotherapy in patients with muscle invasive urothelial carcinoma of the bladder. Oncoimmunology 5(5):e1134412. https://doi.org/10.1080/2162402x.2015.1134412. Epub 2016/07/29. PubMed PMID: 27467953; PMCID: PMC4910705

    Article  PubMed  PubMed Central  Google Scholar 

  64. Horn T, Laus J, Seitz AK, Maurer T, Schmid SC, Wolf P, Haller B, Winkler M, Retz M, Nawroth R, Gschwend JE, Kubler HR, Slotta-Huspenina J (2016) The prognostic effect of tumour-infiltrating lymphocytic subpopulations in bladder cancer. World J Urol 34(2):181–187. Epub 2015/06/10. https://doi.org/10.1007/s00345-015-1615-3

    Article  CAS  PubMed  Google Scholar 

  65. Parodi A, Traverso P, Kalli F, Conteduca G, Tardito S, Curto M, Grillo F, Mastracci L, Bernardi C, Nasi G, Minaglia F, Simonato A, Carmignani G, Ferrera F, Fenoglio D, Filaci G (2016) Residual tumor micro-foci and overwhelming regulatory T lymphocyte infiltration are the causes of bladder cancer recurrence. Oncotarget 7(6):6424–6235. https://doi.org/10.18632/oncotarget.7024. Epub 2016/01/30. PubMed PMID: 26824503; PMCID: PMC4872724

    Article  PubMed  PubMed Central  Google Scholar 

  66. Miyara M, Yoshioka Y, Kitoh A, Shima T, Wing K, Niwa A, Parizot C, Taflin C, Heike T, Valeyre D, Mathian A, Nakahata T, Yamaguchi T, Nomura T, Ono M, Amoura Z, Gorochov G, Sakaguchi S (2009) Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity 30(6):899–911. https://doi.org/10.1016/j.immuni.2009.03.019

    Article  CAS  PubMed  Google Scholar 

  67. Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P (2017) Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol 14(7):399–416. https://doi.org/10.1038/nrclinonc.2016.217. Epub 2017/01/25. PubMed PMID: 28117416; PMCID: PMC5480600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23(11):549–555. Epub 2002/10/29

    Article  CAS  PubMed  Google Scholar 

  69. Chen C, He W, Huang J, Wang B, Li H, Cai Q, Su F, Bi J, Liu H, Zhang B, Jiang N, Zhong G, Zhao Y, Dong W, Lin T (2018) LNMAT1 promotes lymphatic metastasis of bladder cancer via CCL2 dependent macrophage recruitment. Nat Commun 9(1):3826. https://doi.org/10.1038/s41467-018-06152-x. Epub 2018/09/22. PubMed PMID: 30237493; PMCID: PMC6148066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Atanasov G, Potner C, Aust G, Schierle K, Dietel C, Benzing C, Krenzien F, Bartels M, Eichfeld U, Schmelzle M, Bahra M, Pascher A, Wiltberger G (2018) TIE2-expressing monocytes and M2-polarized macrophages impact survival and correlate with angiogenesis in adenocarcinoma of the pancreas. Oncotarget 9(51):29715–29726. https://doi.org/10.18632/oncotarget.25690. Epub 2018/07/25. PubMed PMID: 30038715; PMCID: PMC6049857

    Article  PubMed  PubMed Central  Google Scholar 

  71. Hu Y, He MY, Zhu LF, Yang CC, Zhou ML, Wang Q, Zhang W, Zheng YY, Wang DM, Xu ZQ, Wu YN, Liu LK (2016) Tumor-associated macrophages correlate with the clinicopathological features and poor outcomes via inducing epithelial to mesenchymal transition in oral squamous cell carcinoma. J Exp Clin Cancer Res 35:12. https://doi.org/10.1186/s13046-015-0281-z. Epub 2016/01/16. PubMed PMID: 26769084; PMCID: PMC4714460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhang WJ, Wang XH, Gao ST, Chen C, Xu XY, Sun Q, Zhou ZH, Wu GZ, Yu Q, Xu G, Yao YZ, Guan WX (2018) Tumor-associated macrophages correlate with phenomenon of epithelial-mesenchymal transition and contribute to poor prognosis in triple-negative breast cancer patients. J Surg Res 222:93–101. Epub 2017/12/24. https://doi.org/10.1016/j.jss.2017.09.035

    Article  CAS  PubMed  Google Scholar 

  73. Gartrell RD, Marks DK, Hart TD, Li G, Davari DR, Wu A, Blake Z, Lu Y, Askin KN, Monod A, Esancy CL, Stack EC, Jia DT, Armenta PM, Fu Y, Izaki D, Taback B, Rabadan R, Kaufman HL, Drake CG, Horst BA, Saenger YM (2018) Quantitative analysis of immune infiltrates in primary melanoma. Cancer Immunol Res 6(4):481–493. https://doi.org/10.1158/2326-6066.CIR-17-0360. Epub 2018/02/23. PubMed PMID: 29467127; PMCID: PMC5882545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sorensen MD, Dahlrot RH, Boldt HB, Hansen S, Kristensen BW (2018) Tumour-associated microglia/macrophages predict poor prognosis in high-grade gliomas and correlate with an aggressive tumour subtype. Neuropathol Appl Neurobiol 44(2):185–206. Epub 2017/08/03. https://doi.org/10.1111/nan.12428

    Article  CAS  PubMed  Google Scholar 

  75. Tan KL, Scott DW, Hong F, Kahl BS, Fisher RI, Bartlett NL, Advani RH, Buckstein R, Rimsza LM, Connors JM, Steidl C, Gordon LI, Horning SJ, Gascoyne RD (2012) Tumor-associated macrophages predict inferior outcomes in classic Hodgkin lymphoma: a correlative study from the E2496 Intergroup trial. Blood 120(16):3280–3287. https://doi.org/10.1182/blood-2012-04-421057. Epub 2012/09/06. PubMed PMID: 22948049; PMCID: PMC3476539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Di Caro G, Cortese N, Castino GF, Grizzi F, Gavazzi F, Ridolfi C, Capretti G, Mineri R, Todoric J, Zerbi A, Allavena P, Mantovani A, Marchesi F (2016) Dual prognostic significance of tumour-associated macrophages in human pancreatic adenocarcinoma treated or untreated with chemotherapy. Gut 65(10):1710–1720. Epub 2015/07/15. https://doi.org/10.1136/gutjnl-2015-309193

    Article  CAS  PubMed  Google Scholar 

  77. Taskinen M, Karjalainen-Lindsberg ML, Nyman H, Eerola LM, Leppa S (2007) A high tumor-associated macrophage content predicts favorable outcome in follicular lymphoma patients treated with rituximab and cyclophosphamide-doxorubicin-vincristine-prednisone. Clin Cancer Res 13(19):5784–5789. Epub 2007/10/03. https://doi.org/10.1158/1078-0432.Ccr-07-0778

    Article  CAS  PubMed  Google Scholar 

  78. Hanada T, Nakagawa M, Emoto A, Nomura T, Nasu N, Nomura Y (2000) Prognostic value of tumor-associated macrophage count in human bladder cancer. Int J Urol 7(7):263–269. Epub 2000/07/26. https://doi.org/10.1046/j.1442-2042.2000.00190.x

    Article  CAS  PubMed  Google Scholar 

  79. Takeuchi H, Tanaka M, Tanaka A, Tsunemi A, Yamamoto H (2016) Predominance of M2-polarized macrophages in bladder cancer affects angiogenesis, tumor grade and invasiveness. Oncol Lett 11(5):3403–3408. https://doi.org/10.3892/ol.2016.4392. Epub 2016/04/29. PubMed PMID: 27123124; PMCID: PMC4841030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wang B, Liu H, Dong X, Wu S, Zeng H, Liu Z, Wan D, Dong W, He W, Chen X, Zheng L, Huang J, Lin T (2015) High CD204+ tumor-infiltrating macrophage density predicts a poor prognosis in patients with urothelial cell carcinoma of the bladder. Oncotarget 6(24):20204–20214. https://doi.org/10.18632/oncotarget.3887. Epub 2015/05/23. PubMed PMID: 26001293; PMCID: PMC4652998

    Article  PubMed  PubMed Central  Google Scholar 

  81. Sjodahl G, Lovgren K, Lauss M, Chebil G, Patschan O, Gudjonsson S, Mansson W, Ferno M, Leandersson K, Lindgren D, Liedberg F, Hoglund M (2014) Infiltration of CD3(+) and CD68(+) cells in bladder cancer is subtype specific and affects the outcome of patients with muscle-invasive tumors. Urol Oncol 32(6):791–797. Epub 2014/05/06. https://doi.org/10.1016/j.urolonc.2014.02.007

    Article  PubMed  Google Scholar 

  82. Lima L, Oliveira D, Tavares A, Amaro T, Cruz R, Oliveira MJ, Ferreira JA, Santos L (2014) The predominance of M2-polarized macrophages in the stroma of low-hypoxic bladder tumors is associated with BCG immunotherapy failure. Urol Oncol 32(4):449–457. Epub 2013/11/21. https://doi.org/10.1016/j.urolonc.2013.10.012

    Article  CAS  PubMed  Google Scholar 

  83. Suriano F, Santini D, Perrone G, Amato M, Vincenzi B, Tonini G, Muda A, Boggia S, Buscarini M, Pantano F (2013) Tumor associated macrophages polarization dictates the efficacy of BCG instillation in non-muscle invasive urothelial bladder cancer. J Exp Clin Cancer Res:32–87. https://doi.org/10.1186/1756-9966-32-87. Epub 2014/01/16. PubMed PMID: 24423367; PMCID: PMC4029537

  84. Gabrilovich DI (2017) Myeloid-derived suppressor cells. Cancer Immunol Res 5(1):3–8. https://doi.org/10.1158/2326-6066.Cir-16-0297. Epub 2017/01/06. PubMed PMID: 28052991; PMCID: PMC5426480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yin Z, Li C, Wang J, Xue L (2019) Myeloid-derived suppressor cells: roles in the tumor microenvironment and tumor radiotherapy. Int J Cancer 144(5):933–946. Epub 2018/07/12. https://doi.org/10.1002/ijc.31744

    Article  CAS  PubMed  Google Scholar 

  86. Eruslanov E, Neuberger M, Daurkin I, Perrin GQ, Algood C, Dahm P, Rosser C, Vieweg J, Gilbert SM, Kusmartsev S (2012) Circulating and tumor-infiltrating myeloid cell subsets in patients with bladder cancer. Int J Cancer 130(5):1109–1119. Epub 2011/04/12. https://doi.org/10.1002/ijc.26123

    Article  CAS  PubMed  Google Scholar 

  87. Chevalier MF, Trabanelli S, Racle J, Salome B, Cesson V, Gharbi D, Bohner P, Domingos-Pereira S, Dartiguenave F, Fritschi AS, Speiser DE, Rentsch CA, Gfeller D, Jichlinski P, Nardelli-Haefliger D, Jandus C, Derre L (2017) ILC2-modulated T cell-to-MDSC balance is associated with bladder cancer recurrence. J Clin Invest 127(8):2916–2929. https://doi.org/10.1172/jci89717. Epub 2017/06/27. PubMed PMID: 28650339; PMCID: PMC5531411

    Article  PubMed  PubMed Central  Google Scholar 

  88. Zhang H, Ye YL, Li MX, Ye SB, Huang WR, Cai TT, He J, Peng JY, Duan TH, Cui J, Zhang XS, Zhou FJ, Wang RF, Li J (2017) CXCL2/MIF-CXCR2 signaling promotes the recruitment of myeloid-derived suppressor cells and is correlated with prognosis in bladder cancer. Oncogene 36(15):2095–2104. Epub 2016/10/11. https://doi.org/10.1038/onc.2016.367

    Article  CAS  PubMed  Google Scholar 

  89. Wu K, Tan MY, Jiang JT, Mu XY, Wang JR, Zhou WJ, Wang X, Li MQ, He YY, Liu ZH (2018) Cisplatin inhibits the progression of bladder cancer by selectively depleting G-MDSCs: a novel chemoimmunomodulating strategy. Clin Immunol 193:60–69. Epub 2018/02/08. https://doi.org/10.1016/j.clim.2018.01.012

    Article  CAS  PubMed  Google Scholar 

  90. Yang G, Shen W, Zhang Y, Liu M, Zhang L, Liu Q, Lu HH, Bo J (2017) Accumulation of myeloid-derived suppressor cells (MDSCs) induced by low levels of IL-6 correlates with poor prognosis in bladder cancer. Oncotarget 8(24):38378–38388. https://doi.org/10.18632/oncotarget.16386. Epub 2017/04/19. PubMed PMID: 28418913; PMCID: PMC5503539

    Article  PubMed  PubMed Central  Google Scholar 

  91. Yuan XK, Zhao XK, Xia YC, Zhu X, Xiao P (2011) Increased circulating immunosuppressive CD14(+)HLA-DR(−/low) cells correlate with clinical cancer stage and pathological grade in patients with bladder carcinoma. J Int Med Res 39(4):1381–1391. Epub 2011/10/12. https://doi.org/10.1177/147323001103900424

    Article  CAS  PubMed  Google Scholar 

  92. Ornstein MC, Diaz-Montero CM, Rayman P, Elson P, Haywood S, Finke JH, Kim JS, Pavicic PG Jr, Lamenza M, Devonshire S, Dann P, Schach K, Stephenson A, Campbell S, Emamekhoo H, Ernstoff MS, Hoimes CJ, Gilligan TD, Rini BI, Garcia JA, Grivas P (2018) Myeloid-derived suppressors cells (MDSC) correlate with clinicopathologic factors and pathologic complete response (pCR) in patients with urothelial carcinoma (UC) undergoing cystectomy. Urol Oncol 36(9):405–412. https://doi.org/10.1016/j.urolonc.2018.02.018. Epub 2018/04/03

    Article  CAS  PubMed  Google Scholar 

  93. De Palma M, Biziato D, Petrova TV (2017) Microenvironmental regulation of tumour angiogenesis. Nat Rev Cancer 17(8):457–474. Epub 2017/07/15. https://doi.org/10.1038/nrc.2017.51

    Article  CAS  PubMed  Google Scholar 

  94. Pitroda SP, Zhou T, Sweis RF, Filippo M, Labay E, Beckett MA, Mauceri HJ, Liang H, Darga TE, Perakis S, Khan SA, Sutton HG, Zhang W, Khodarev NN, Garcia JG, Weichselbaum RR (2012) Tumor endothelial inflammation predicts clinical outcome in diverse human cancers. PLoS One 7(10):e46104. https://doi.org/10.1371/journal.pone.0046104. Epub 2012/10/12. PubMed PMID: 23056240; PMCID: PMC3464251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Armulik A, Genove G, Betsholtz C (2011) Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 21(2):193–215. Epub 2011/08/16. https://doi.org/10.1016/j.devcel.2011.07.001

    Article  CAS  PubMed  Google Scholar 

  96. Huang Y, Yuan J, Righi E, Kamoun WS, Ancukiewicz M, Nezivar J, Santosuosso M, Martin JD, Martin MR, Vianello F, Leblanc P, Munn LL, Huang P, Duda DG, Fukumura D, Jain RK, Poznansky MC (2012) Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy. Proc Natl Acad Sci U S A 109(43):17561–17566. https://doi.org/10.1073/pnas.1215397109. Epub 2012/10/10. PubMed PMID: 23045683; PMCID: PMC3491458

    Article  PubMed  PubMed Central  Google Scholar 

  97. Ciciola P, Cascetta P, Bianco C, Formisano L, Bianco R (2020) Combining immune checkpoint inhibitors with anti-angiogenic agents. J Clin Med 9(3). https://doi.org/10.3390/jcm9030675. Epub 2020/03/07. PubMed PMID: 32138216; PMCID: PMC7141336

  98. Jain RK (2014) Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. Cancer Cell 26(5):605–622. https://doi.org/10.1016/j.ccell.2014.10.006. Epub 2014/12/18. PubMed PMID: 25517747; PMCID: PMC4269830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Motzer RJ, Penkov K, Haanen J, Rini B, Albiges L, Campbell MT, Venugopal B, Kollmannsberger C, Negrier S, Uemura M, Lee JL, Vasiliev A, Miller WH Jr, Gurney H, Schmidinger M, Larkin J, Atkins MB, Bedke J, Alekseev B, Wang J, Mariani M, Robbins PB, Chudnovsky A, Fowst C, Hariharan S, Huang B, di Pietro A, Choueiri TK (2019) Avelumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma. N Engl J Med 380(12):1103–1115. https://doi.org/10.1056/NEJMoa1816047. Epub 2019/02/20. PubMed PMID: 30779531; PMCID: PMC6716603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Rini BI, Plimack ER, Stus V, Gafanov R, Hawkins R, Nosov D, Pouliot F, Alekseev B, Soulieres D, Melichar B, Vynnychenko I, Kryzhanivska A, Bondarenko I, Azevedo SJ, Borchiellini D, Szczylik C, Markus M, McDermott RS, Bedke J, Tartas S, Chang YH, Tamada S, Shou Q, Perini RF, Chen M, Atkins MB, Powles T (2019) Pembrolizumab plus Axitinib versus Sunitinib for advanced renal-cell carcinoma. N Engl J Med 380(12):1116–1127. Epub 2019/02/20. https://doi.org/10.1056/NEJMoa1816714

    Article  CAS  PubMed  Google Scholar 

  101. Ghate K, Amir E, Kuksis M, Hernandez-Barajas D, Rodriguez-Romo L, Booth CM, Vera-Badillo FE (2019) PD-L1 expression and clinical outcomes in patients with advanced urothelial carcinoma treated with checkpoint inhibitors: a meta-analysis. Cancer Treat Rev 76:51–56. Epub 2019/05/28. https://doi.org/10.1016/j.ctrv.2019.05.002

    Article  CAS  PubMed  Google Scholar 

  102. Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K, Wang Y, Kadel EE III, Koeppen H, Astarita JL, Cubas R, Jhunjhunwala S, Banchereau R, Yang Y, Guan Y, Chalouni C, Ziai J, Senbabaoglu Y, Santoro S, Sheinson D, Hung J, Giltnane JM, Pierce AA, Mesh K, Lianoglou S, Riegler J, Carano RAD, Eriksson P, Hoglund M, Somarriba L, Halligan DL, van der Heijden MS, Loriot Y, Rosenberg JE, Fong L, Mellman I, Chen DS, Green M, Derleth C, Fine GD, Hegde PS, Bourgon R, Powles T (2018) TGFbeta attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554(7693):544–548. https://doi.org/10.1038/nature25501. Epub 2018/02/15. PubMed PMID: 29443960; PMCID: PMC6028240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kamoun A, de Reynies A, Allory Y, Sjodahl G, Robertson AG, Seiler R, Hoadley KA, Groeneveld CS, Al-Ahmadie H, Choi W, Castro MAA, Fontugne J, Eriksson P, Mo Q, Kardos J, Zlotta A, Hartmann A, Dinney CP, Bellmunt J, Powles T, Malats N, Chan KS, Kim WY, McConkey DJ, Black PC, Dyrskjot L, Hoglund M, Lerner SP, Real FX, Radvanyi F (2019) A consensus molecular classification of muscle-invasive bladder cancer. Eur Urol. Epub 2019/09/30. https://doi.org/10.1016/j.eururo.2019.09.006

  104. Kamoun A, Reynies A, Allory Y, Sjodahl G, Robertson AG, Seiler R, Hoadley KA, Groeneveld CS, Al-Ahmadie H, Choi W, Castro MAA, Fontugne J, Eriksson P, Mo Q, Kardos J, Zlotta A, Hartmann A, Dinney CP, Bellmunt J, Powles T, Malats N, Chan KS, Kim WY, McConkey DJ, Black PC, Dyrskjot L, Hoglund M, Lerner SP, Real FX, Radvanyi F (2019) Bladder cancer molecular taxonomy G. A consensus molecular classification of muscle-invasive bladder cancer. Eur Urol. Epub 2019/09/30. https://doi.org/10.1016/j.eururo.2019.09.006

  105. Spranger S, Gajewski TF (2018) Impact of oncogenic pathways on evasion of antitumour immune responses. Nat Rev Cancer 18(3):139–147. Epub 2018/01/13. https://doi.org/10.1038/nrc.2017.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Luke JJ, Bao R, Sweis RF, Spranger S, Gajewski TF (2019) WNT/beta-catenin pathway activation correlates with immune exclusion across human cancers. Clin Cancer Res 25(10):3074–3083. https://doi.org/10.1158/1078-0432.CCR-18-1942. Epub 2019/01/13. PubMed PMID: 30635339; PMCID: PMC6522301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Korpal M, Puyang X, Jeremy Wu Z, Seiler R, Furman C, Oo HZ, Seiler M, Irwin S, Subramanian V, Julie Joshi J, Wang CK, Rimkunas V, Tortora D, Yang H, Kumar N, Kuznetsov G, Matijevic M, Chow J, Kumar P, Zou J, Feala J, Corson L, Henry R, Selvaraj A, Davis A, Bloudoff K, Douglas J, Kiss B, Roberts M, Fazli L, Black PC, Fekkes P, Smith PG, Warmuth M, Yu L, Hao MH, Larsen N, Daugaard M, Zhu P (2017) Evasion of immunosurveillance by genomic alterations of PPARgamma/RXRalpha in bladder cancer. Nat Commun 8(1):103. https://doi.org/10.1038/s41467-017-00147-w. Epub 2017/07/26. PubMed PMID: 28740126; PMCID: PMC5524640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wang L, Gong Y, Saci A, Szabo PM, Martini A, Necchi A, Siefker-Radtke A, Pal S, Plimack ER, Sfakianos JP, Bhardwaj N, Horowitz A, Farkas AM, Mulholland D, Fischer BS, Oh WK, Sharma P, Zhu J, Galsky MD (2019) Fibroblast growth factor receptor 3 alterations and response to PD-1/PD-L1 blockade in patients with metastatic urothelial cancer. Eur Urol 76(5):599–603. https://doi.org/10.1016/j.eururo.2019.06.025. Epub 2019/07/06. PubMed PMID: 31272788; PMCID: PMC6801024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Stack EC, Wang C, Roman KA, Hoyt CC (2014) Multiplexed immunohistochemistry, imaging, and quantitation: a review, with an assessment of Tyramide signal amplification, multispectral imaging and multiplex analysis. Methods 70(1):46–58. Epub 2014/09/23. https://doi.org/10.1016/j.ymeth.2014.08.016

    Article  CAS  PubMed  Google Scholar 

  110. Wee YTF, Alkaff SMF, Lim JCT, Loh JJH, Hilmy MH, Ong C, Nei WL, Jain A, Lim A, Takano A, Azhar R, Wan WK, Newell E, Yeong J, Lim TKH (2018) An integrated automated multispectral imaging technique that simultaneously detects and quantitates viral RNA and immune cell protein markers in fixed sections from Epstein-Barr virus-related tumours. Ann Diagn Pathol 37:12–19. Epub 2018/09/16. https://doi.org/10.1016/j.anndiagpath.2018.09.002

    Article  PubMed  Google Scholar 

  111. Sayaman RW, Saad M, Thorsson V, Hendrickx W, Roelands J, Mokrab Y, Farshidfar F, Kirchhoff T, Sweis RF, Bathe OF, Porta-Pardo E, Campbell MJ, Stretch C, Hu D, Huntsman S, Graff RE, Syed N, Radvanyi L, Shelley S, Wolf D, Marincola FM, Ceccarelli M, Galon J, Ziv E, Bedognetti D (2020) Germline genetic contribution to the immune landscape of cancer. https://doi.org/10.1101/2020.01.30.926527. bioRxiv. 2020.01.30.926527

  112. Sweis RF, Golan S, Barashi N, Hill E, Andolfi C, Werntz RP, Bloodworth J, Steinberg GD (2019) Association of the commensal urinary microbiome with response to Bacillus Calmette-Guérin (BCG) immunotherapy in non-muscle invasive bladder cancer. J Clin Oncol 37(suppl 7S; abstr 423)

    Google Scholar 

  113. Magnon C, Hall SJ, Lin J, Xue X, Gerber L, Freedland SJ, Frenette PS (2013) Autonomic nerve development contributes to prostate cancer progression. Science 341(6142):1236361. Epub 2013/07/13. https://doi.org/10.1126/science.1236361

    Article  PubMed  Google Scholar 

  114. Pedro HDM, Prazeres CL, Silva WN, Santos GSP, Costa AC, Picoli CC, Gonçalves WA, Vieira MS, Costa PAC, Rocha BGS, Sena IFG, Campos LMCC, Paz MT, Costa MR, Resende RR, Cunha TM, Mintz A, Birbrair A (2020) Ablation of sensory nerves favours melanoma progression. J Cell Mol Med

    Google Scholar 

  115. Zahalka AH, Arnal-Estapé A, Maryanovich M, Nakahara F, Cruz CD, Finley LWS, Frenette PS (2017) Adrenergic nerves activate an angio-metabolic switch in prostate cancer. Science 358(6361):321–326. https://doi.org/10.1126/science.aah5072. Epub 2017/10/21. PubMed PMID: 29051371; PMCID: PMC5783182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Hayakawa Y, Sakitani K, Konishi M, Asfaha S, Niikura R, Tomita H, Renz BW, Tailor Y, Macchini M, Middelhoff M, Jiang Z, Tanaka T, Dubeykovskaya ZA, Kim W, Chen X, Urbanska AM, Nagar K, Westphalen CB, Quante M, Lin CS, Gershon MD, Hara A, Zhao CM, Chen D, Worthley DL, Koike K, Wang TC (2017) Nerve growth factor promotes gastric tumorigenesis through aberrant cholinergic signaling. Cancer Cell 31(1):21–34. https://doi.org/10.1016/j.ccell.2016.11.005. Epub 2016/12/19. PubMed PMID: 27989802; PMCID: PMC5225031

    Article  CAS  PubMed  Google Scholar 

  117. Ayala GE, Wheeler TM, Shine HD, Schmelz M, Frolov A, Chakraborty S, Rowley D (2001) In vitro dorsal root ganglia and human prostate cell line interaction: redefining perineural invasion in prostate cancer. Prostate 49(3):213–223. Epub 2001/12/18. https://doi.org/10.1002/pros.1137

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by NIH K08CA234392, Cancer Research Foundation Young Investigator Award, and an Institutional Research Grant (#IRG-16-222-56) from the American Cancer Society and the Cancer Center Support Grant (#P30 CA14599) of the University of Chicago Medicine Comprehensive Cancer Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randy F. Sweis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hatogai, K., Sweis, R.F. (2020). The Tumor Microenvironment of Bladder Cancer. In: Birbrair, A. (eds) Tumor Microenvironments in Organs. Advances in Experimental Medicine and Biology, vol 1296. Springer, Cham. https://doi.org/10.1007/978-3-030-59038-3_17

Download citation

Publish with us

Policies and ethics