Skip to main content

Polynomial Time over the Reals with Parsimony

  • Conference paper
  • First Online:
Functional and Logic Programming (FLOPS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12073))

Included in the following conference series:

  • 337 Accesses

Abstract

We provide a characterization of Ko’s class of polynomial time computable functions over real numbers. This characterization holds for a stream based language using a parsimonious type discipline, a variant of propositional linear logic. We obtain a first characterization of polynomial time computations over the reals on a higher-order functional language using a linear/affine type system.

E. Hainry, D. Mazza and R. Péchoux—This work was supported by ANR-14-CE25-0005 Elica: Expanding Logical Ideas for Complexity Analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Müller, N.T.: Subpolynomial complexity classes of real functions and real numbers. In: Kott, L. (ed.) ICALP 1986. LNCS, vol. 226, pp. 284–293. Springer, Heidelberg (1986). https://doi.org/10.1007/3-540-16761-7_78

    Chapter  Google Scholar 

  2. Ko, K.I.: Complexity Theory of Real Functions. Birkhäuser, Basel (1991). https://doi.org/10.1007/978-1-4684-6802-1

    Book  MATH  Google Scholar 

  3. Weihrauch, K.: Computable Analysis: An Introduction. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-642-56999-9

    Book  MATH  Google Scholar 

  4. Kawamura, A., Cook, S.A.: Complexity theory for operators in analysis. TOCT 4(2), 5:1–5:24 (2012). https://doi.org/10.1145/2189778.2189780

    Article  MATH  Google Scholar 

  5. Brattka, V., Hertling, P.: Feasible real random access machines. J. Comp. 14(4), 490–526 (1998). https://doi.org/10.1006/jcom.1998.0488

    Article  MathSciNet  MATH  Google Scholar 

  6. Ciaffaglione, A., Di Gianantonio, P.: A certified, corecursive implementation of exact real numbers. TCS 351, 39–51 (2006). https://doi.org/10.1016/j.tcs.2005.09.061

    Article  MathSciNet  MATH  Google Scholar 

  7. Di Gianantonio, P., Edalat, A.: A language for differentiable functions. In: Pfenning, F. (ed.) FoSSaCS 2013. LNCS, vol. 7794, pp. 337–352. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37075-5_22

    Chapter  Google Scholar 

  8. Ehrhard, T., Regnier, L.: The differential lambda-calculus. TCS 309(1–3), 1–41 (2003). https://doi.org/10.1016/S0304-3975(03)00392-X

    Article  MathSciNet  MATH  Google Scholar 

  9. Girard, J.: Light linear logic. Inf. Comput. 143(2), 175–204 (1998). https://doi.org/10.1006/inco.1998.2700

    Article  MathSciNet  MATH  Google Scholar 

  10. Hofmann, M.: Linear types and non-size-increasing polynomial time computation. Inf. Comput. 183(1), 57–85 (2003). https://doi.org/10.1016/S0890-5401(03)00009-9

    Article  MathSciNet  MATH  Google Scholar 

  11. Gaboardi, M., Rocca, S.R.D.: A soft type assignment system for lambda -calculus. In: CSL, pp. 253–267 (2007). https://doi.org/10.1007/978-3-540-74915-8_21

  12. Baillot, P., Terui, K.: Light types for polynomial time computation in \(\lambda \)-calculus. Inf. Comput. 207(1), 41–62 (2009). https://doi.org/10.1016/j.ic.2008.08.005

    Article  MathSciNet  MATH  Google Scholar 

  13. Mazza, D., Terui, K.: Parsimonious types and non-uniform computation. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 350–361. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47666-6_28

    Chapter  MATH  Google Scholar 

  14. Mazza, D.: Simple parsimonious types and logarithmic space. In: CSL 2015, pp. 24–40 (2015). https://doi.org/10.4230/LIPIcs.CSL.2015.24

  15. Accattoli, B., Dal Lago, U.: Beta reduction is invariant, indeed. In: CSL-LICS 2014, pp. 8:1–8:10 (2014). https://doi.org/10.1145/2603088.2603105

  16. Gaboardi, M., Péchoux, R.: On bounding space usage of streams using interpretation analysis. Sci. Comput. Program. 111, 395–425 (2015). https://doi.org/10.1016/j.scico.2015.05.004

    Article  Google Scholar 

  17. Férée, H., Hainry, E., Hoyrup, M., Péchoux, R.: Characterizing polynomial time complexity of stream programs using interpretations. TCS 585, 41–54 (2015). https://doi.org/10.1016/j.tcs.2015.03.008

    Article  MathSciNet  MATH  Google Scholar 

  18. Gaboardi, M., Péchoux, R.: Algebras and coalgebras in the light affine lambda calculus. In: ICFP, pp. 114–126 (2015). https://doi.org/10.1145/2858949.2784759

  19. Dal Lago, U.: Infinitary lambda calculi from a linear perspective. In: LICS, pp. 447–456 (2016). https://doi.org/10.1145/2933575.2934505

  20. Campagnolo, M.L.: The complexity of real recursive functions. In: Calude, C.S., Dinneen, M.J., Peper, F. (eds.) UMC 2002. LNCS, vol. 2509, pp. 1–14. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45833-6_1

    Chapter  MATH  Google Scholar 

  21. Bournez, O., Gomaa, W., Hainry, E.: Algebraic characterizations of complexity-theoretic classes of real functions. Int. J. Unconv. Comput. 7(5), 331–351 (2011)

    Google Scholar 

  22. Leivant, D., Ramyaa, R.: The computational contents of ramified corecurrence. In: Pitts, A. (ed.) FoSSaCS 2015. LNCS, vol. 9034, pp. 422–435. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46678-0_27

    Chapter  MATH  Google Scholar 

  23. Berger, U.: From coinductive proofs to exact real arithmetic: theory and applications. Log. Methods Comput. Sci. 7(1) (2011). https://doi.org/10.2168/LMCS-7(1:8)2011

  24. Berger, U., Seisenberger, M.: Proofs, programs, processes. Theory Comput. Syst. 51(3), 313–329 (2012). https://doi.org/10.1007/s00224-011-9325-8

    Article  MathSciNet  MATH  Google Scholar 

  25. Chaitin, G.J.: A theory of program size formally identical to information theory. J. ACM 22(3), 329–340 (1975). https://doi.org/10.1145/321892.321894

    Article  MathSciNet  MATH  Google Scholar 

  26. Baillot, P.: Type inference for light affine logic via constraints on words. Theoret. Comput. Sci. 328(3), 289–323 (2004). https://doi.org/10.1016/j.tcs.2004.08.014

    Article  MathSciNet  MATH  Google Scholar 

  27. Atassi, V., Baillot, P., Terui, K.: Verification of ptime reducibility for system F terms: type inference in dual light affine logic. Log. Methods Comput. Sci. 3(4) (2007). https://doi.org/10.2168/LMCS-3(4:10)2007

  28. Kennaway, J., Klop, J.W., Sleep, M.R., de Vries, F.J.: Infinitary lambda calculus. TCS 175(1), 93–125 (1997). https://doi.org/10.1016/S0304-3975(96)00171-5

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romain Péchoux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hainry, E., Mazza, D., Péchoux, R. (2020). Polynomial Time over the Reals with Parsimony. In: Nakano, K., Sagonas, K. (eds) Functional and Logic Programming. FLOPS 2020. Lecture Notes in Computer Science(), vol 12073. Springer, Cham. https://doi.org/10.1007/978-3-030-59025-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59025-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59024-6

  • Online ISBN: 978-3-030-59025-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics