Skip to main content

Performance Evaluation of Selected 3D Keypoint Detector–Descriptor Combinations

  • Conference paper
  • First Online:
Computer Vision and Graphics (ICCVG 2020)

Abstract

Nowadays, with easily accessible 3D point cloud acquisition tools, the field of point cloud processing gained a lot of attention. Extracting features from 3D data became main computer vision task. In this paper, we reviewed methods of extracting local features from objects represented by point clouds. The goal of the work was to make theoretical overview and evaluation of selected point cloud detectors and descriptors. We performed an experimental assessment of the repeatability and computational efficiency of individual methods using the well known Stanford 3D Scanning Repository database with the aim of identifying a method which is computationally-efficient in finding good corresponding points between two point clouds. We combine the detectors with several feature descriptors and show which combination of detector and descriptor is suitable for object recognition task in cluttered scenes. Our tests show that choosing the right detector impacts the descriptor’s performance in the recognition process. The repeatability tests of the detectors show that the data which contained occlusions have a high impact on their performance. We summarized the results into graphs and described them with respect to the individual tested properties of the methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Azimi, S., Lall, B., Gandhi, T.K.: Performance evalution of 3D keypoint detectors and descriptors for plants health classification. In: 2019 16th International Conference on Machine Vision Applications (MVA), pp. 1–6. IEEE (2019)

    Google Scholar 

  2. Belongie, S., Mori, G., Malik, J.: Matching with shape contexts. In: Krim, H., Yezzi, A. (eds.) Statistics and Analysis of Shapes, pp. 81–105. Springer, Heidelberg (2006). https://doi.org/10.1007/0-8176-4481-4_4

    Chapter  Google Scholar 

  3. Bold, N., Zhang, C., Akashi, T.: 3D point cloud retrieval with bidirectional feature match. IEEE Access 7, 164194–164202 (2019)

    Article  Google Scholar 

  4. Deng, H., Birdal, T., Ilic, S.: PPF-FoldNet: unsupervised learning of rotation invariant 3D local descriptors. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11209, pp. 620–638. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01228-1_37

    Chapter  Google Scholar 

  5. Deng, H., Birdal, T., Ilic, S.: PPFNet: global context aware local features for robust 3D point matching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 195–205 (2018)

    Google Scholar 

  6. Deng, H., Birdal, T., Ilic, S.: 3D local features for direct pairwise registration. In: Computer Vision and Pattern Recognition (CVPR). IEEE (2019)

    Google Scholar 

  7. Filipe, S., Alexandre, L.A.: A comparative evaluation of 3D keypoint detectors in a RGB-D object dataset. In: 2014 International Conference on Computer Vision Theory and Applications (VISAPP), vol. 1, pp. 476–483. IEEE (2014)

    Google Scholar 

  8. Frome, A., Huber, D., Kolluri, R., Bülow, T., Malik, J.: Recognizing objects in range data using regional point descriptors. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3023, pp. 224–237. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24672-5_18

    Chapter  Google Scholar 

  9. Guerrero, P., Kleiman, Y., Ovsjanikov, M., Mitra, N.J.: PCPNet learning local shape properties from raw point clouds. In: Computer Graphics Forum, vol. 37, pp. 75–85. Wiley Online Library (2018)

    Google Scholar 

  10. Hänsch, R., Weber, T., Hellwich, O.: Comparison of 3D interest point detectors and descriptors for point cloud fusion. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2(3), 57 (2014)

    Article  Google Scholar 

  11. Harris, C.G., Stephens, M., et al.: A combined corner and edge detector. In: Proceedings of the 4th Alvey Vision Conference, pp. 23.1–23.6 (1988)

    Google Scholar 

  12. Levoy, M., Gerth, J., Curless, B., Pull, K.: The Stanford 3D scanning repository (2005). http://www-graphics.stanford.edu/data/3Dscanrep

  13. Li, J., Chen, B.M., Lee, G.H.: SO-Net: Self-organizing network for point cloud analysis. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9397–9406, June 2018

    Google Scholar 

  14. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 1150–1157. IEEE (1999)

    Google Scholar 

  15. Markuš, N., Pandžić, I., Ahlberg, J.: Learning local descriptors by optimizing the keypoint-correspondence criterion: applications to face matching, learning from unlabeled videos and 3D-shape retrieval. IEEE Trans. Image Process. 28(1), 279–290 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mian, A., Bennamoun, M., Owens, R.: On the repeatability and quality of keypoints for local feature-based 3D object retrieval from cluttered scenes. Int. J. Comput. Vis. 89(2–3), 348–361 (2010). https://doi.org/10.1007/s11263-009-0296-z

    Article  Google Scholar 

  17. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30, pp. 5099–5108. Curran Associates, Inc. (2017)

    Google Scholar 

  18. Rusu, R.B., Blodow, N., Beetz, M.: Fast point feature histograms (FPFH) for 3D registration. In: 2009 IEEE International Conference on Robotics and Automation, pp. 3212–3217. IEEE (2009)

    Google Scholar 

  19. Rusu, R.B., Blodow, N., Marton, Z.C., Beetz, M.: Aligning point cloud views using persistent feature histograms. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems,. pp. 3384–3391. IEEE (2008)

    Google Scholar 

  20. Rusu, R.B., Cousins, S.: 3D is here: Point Cloud Library (PCL). In: IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, 9–13 May 2011

    Google Scholar 

  21. Salti, S., Tombari, F., Di Stefano, L.: SHOT: unique signatures of histograms for surface and texture description. Comput. Vis. Image Underst. 125, 251–264 (2014)

    Article  Google Scholar 

  22. Sipiran, I., Bustos, B.: Harris 3D: a robust extension of the Harris operator for interest point detection on 3D meshes. Vis. Comput. 27(11), 963 (2011). https://doi.org/10.1007/s00371-011-0610-y

    Article  Google Scholar 

  23. Steder, B., Rusu, R.B., Konolige, K., Burgard, W.: Point feature extraction on 3D range scans taking into account object boundaries. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 2601–2608. IEEE (2011)

    Google Scholar 

  24. Tombari, F., Salti, S., Di Stefano, L.: Unique shape context for 3D data description. In: Proceedings of the ACM Workshop on 3D Object Retrieval, pp. 57–62 (2010)

    Google Scholar 

  25. Tombari, F., Salti, S., di Stefano, L.: Performance evaluation of 3D keypoint detectors. Int. J. Comput. Vis. 102(1–3), 198–220 (2013). https://doi.org/10.1007/s11263-012-0545-4

    Article  Google Scholar 

  26. Vargas, J., Garcia, A., Oprea, S., Escolano, S., Rodriguez, J.: Object recognition pipeline: Grasping in domestic environments, pp. 18–33. IGI Global (2018)

    Google Scholar 

  27. Yew, Z.J., Lee, G.H.: 3DFeat-Net: weakly supervised local 3D features for point cloud registration. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 630–646. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01267-0_37

    Chapter  Google Scholar 

  28. Zhong, Y.: Intrinsic shape signatures: a shape descriptor for 3D object recognition. In: 2009 IEEE 12th International Conference on Computer Vision Workshops (ICCV Workshops), pp. 689–696. IEEE (2009)

    Google Scholar 

Download references

Acknowledgment

This work has been funded by Slovak Ministry of Education under contract VEGA 1/0796/00 and by the Charles University grant SVV-260588.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Stancelova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stancelova, P., Sikudova, E., Cernekova, Z. (2020). Performance Evaluation of Selected 3D Keypoint Detector–Descriptor Combinations. In: Chmielewski, L.J., Kozera, R., Orłowski, A. (eds) Computer Vision and Graphics. ICCVG 2020. Lecture Notes in Computer Science(), vol 12334. Springer, Cham. https://doi.org/10.1007/978-3-030-59006-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59006-2_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59005-5

  • Online ISBN: 978-3-030-59006-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics