Skip to main content

Three-Dimensional Operating Room with Unlimited Perspective

  • Conference paper
  • First Online:
Multimedia Communications, Services and Security (MCSS 2020)

Abstract

Apart from operating tables and modern surgical instruments, the modern operating rooms are equipped with displays and video surveillance systems. The three-dimensional operating room allows users to watch medics perform surgery from different, individually chosen, points of view. For the first time, it is possible to reproduce/repeat the course of the operations and change the perspective or position, from which it is observed. Here, we proposed a solution based on Microsoft HoloLens and Azure Kinect DK devices as remote support to patient management. The operating room is transferred to the digital form in real-time using Augmented Reality based technologies. Users can move around the digital place like a ghost in real space. The approach proposed allows users to see observe surgery from any point of view they want without disturbing the surgeon’s workflow. They can change their positions, angle, and place of observation. All environmental restrictions disappear. The presented solution gives trainees a convenient opportunity to learn. It may make a significant contribution to improving the surgeon training, patients’ outcomes, and may allow virtual medical consultations during the surgery between specialists without them leaving their workplace.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andrews, C., Southworth, M.K., Silva, J.N.A., Silva, J.R.: Extended reality in medical practice. Curr. Treat. Options Cardiovasc. Med. 21(4), 1–12 (2019). https://doi.org/10.1007/s11936-019-0722-7

    Article  Google Scholar 

  2. Eckert, M., Volmerg, J.S., Friedrich, C.M.: Augmented reality in medicine: systematic and bibliographic review. JMIR Mhealth Uhealth 7(4), e10967 (2019)

    Article  Google Scholar 

  3. Mazurek, J., et al.: Virtual reality in medicine: a brief overview and future research directions. Hum. Mov. 20(3), 16–22 (2019)

    Article  Google Scholar 

  4. Monsky, W.L., James, R., Seslar, S.S.: Virtual and augmented reality applications in medicine and surgery-the fantastic voyage is here. Anat. Physiol. Curr. Res. 9(1), 313 (2019)

    Google Scholar 

  5. Google-glass. https://lavreb.wordpress.com/2018/01/03/google-glass-surgery/

  6. Dotmed. https://www.dotmed.com/news/story/38217?s=newsreg

  7. Szpital Uniwersytecki w Krakowie (2018). https://en.su.krakow.pl/su.krakow.pl

  8. Szpital Uniwersytecki w Krakowie Holografia. https://www.su.krakow.pl/nasz-szpital/aktualnosci/hologram-w-zabiegach-kardiologicznych

  9. Sinkin, J.C., Rahman, O.F., Maurice, Y., Nahabedian, M.: Google glass in the operating room: the plastic surgeon’s perspective. Plast. Reconstr. Surg. 138, 298–302 (2016)

    Article  Google Scholar 

  10. Brewer, Z.E., Fann, H.C., Ogden, D.W., Burdon, T.A., Sheikh, A.Y.: Inheriting the learner’s view: a google glass-based wearable computing platform for improving surgical trainee performance. J. Surg. Educ. 73, 682–688 (2016)

    Article  Google Scholar 

  11. Tepper, O.M., et al.: Mixed reality with hololens: where virtual reality meets augmented reality in the operating room. Plast. Reconstr. Surg. 140(5), 1066–1170 (2017)

    Article  Google Scholar 

  12. Zuo, Y., et al.: A novel evaluation model for a mixed-reality surgical navigation system: where microsoft hololens meets the operating room. Surg. Innov., 1–10 (2020)

    Google Scholar 

  13. Hanna, M.G., Ahmed, I., Nine, J., Prajapati, S., Pantanowitz, L.: Augmented reality technology using microsoft hololens in anatomic pathology. Arch. Pathol. Lab. Med. 142, 638–644 (2018)

    Article  Google Scholar 

  14. Proniewska, K., Dołęga-Dolegowski, D., Pregowska, A., Dudek, D.: Augmented reality as a doctor support to meet the general data protection regulation in Europe, NFIC, 20th New Frontiers in Interventional Cardiology, 2019-12-11/12-13, Kraków (PL),10 (2019)

    Google Scholar 

  15. Case Western Reserve HoloLens. https://case.edu/hololens/

  16. 3d4medical. https://3d4medical.com/apps/holohuman

  17. Tang, Y.M., Leung, Y.: Comprehending products with mixed reality: geometric relationships and creativity. Int. J. Eng. Bus. Manag. 10, 1–12 (2018)

    Article  Google Scholar 

  18. Karambakhsh, A., Kamel, A., Shenga, B., Li, P., Yang, P., Feng, D.D.: Deep gesture interaction for augmented anatomy learning. Int. J. Inf. Manag. 45, 328–336 (2019)

    Article  Google Scholar 

  19. Birt, J., Stromberg, Z., Cowling, M., Moro, C.: Mobile mixed reality for experiential learning and simulation in medical and health sciences education. Information 9(31), 2–14 (2018)

    Google Scholar 

  20. Slater, M., et al.: An experimental study of a virtual reality counseling paradigm using embodied self-dialogue. Sci. Rep. 9(1), 1090321 (2019)

    Google Scholar 

  21. Azuma, R., Baillot, Y., Behringer, R., Feiner, S.K., Julier, S., MacIntyre, B.: Recent advances in augmented reality. IEEE Comput. Graph. Appl. 21(6), 34–47 (2001)

    Article  Google Scholar 

  22. Yu, D., Jin, J.S., Luo, S., Lai, W., Huang, Q.: A useful visualization technique: a literature review for augmented reality and its application, limitation&future direction. In: Huang, M.L., Nguyen, Q.V., Zhang, K. (eds.) Visual Information Communication, pp. 311–337. Springer, New York, NY, USA (2010)

    Google Scholar 

  23. Regg, C., Rusinkiewicz, S., Matusiak, W., Gross, M.: Computational highlight holography. ACM Trans. Graph. 29(6), 170 (2010)

    Article  Google Scholar 

  24. Rosen, J., Vijayakumar, A., Kumar, M., Rai, M.R., Kelner, R., Kaster, Y., Mukherjee, S.: Recent advances in self-interference incoherent digital holography. Adv. Optics Photonics 11(1), 1–66 (2019)

    Article  Google Scholar 

  25. Rosen, J., Vijayakumar, A., Ratnam, M., Mukherjee, S., Bulbul, A.: Review of 3D imaging by coded aperture correlation holography (COACH). Appl. Sci. 9(3), 605 (2019)

    Article  Google Scholar 

  26. Bruckheimer, E., et al.: Computer-generated real-time digital holography: first time use in clinical medical imaging. Eur. Heart J. Cardiovasc. Imag. 17, 845–849 (2016)

    Google Scholar 

  27. Lombardi, S., Saragih, J., Simon, T., Sheikh, Y.: Deep appearance models for face rendering. ACM Trans. Graph. 37(4), 68 (2019)

    Google Scholar 

  28. Maimone, A., Georgiou, A., Kollin, J.S.: Holographic near-eye displays for virtual and augmented reality. ACM Trans. Graph. 36(4), 85 (2017)

    Article  Google Scholar 

  29. Akşit, K., Kim, J., Kim, J., Shirley, P., Luebke, D.P.: Near-eye varifocal augmented reality display using see-through screens. ACM Trans. Graph. 36(6), 189 (2017)

    Article  Google Scholar 

  30. Jang, C., Bang, K., Li, G., Lee, B.: Holographic near-eye display with expanded eye-box. ACM Trans. Graph. 37(6), 195 (2019)

    Article  Google Scholar 

  31. Proniewska, K., Dołęga-Dołęgowski, D., Pregowska, A., Walecki, P., Dudek, D.: Holography as a progressive revolution in medicine in simulations in medicine computer-aided diagnostics and therapy. In: Roterman-Konieczna, I. (ed.) DeGruyter, pp. 103–116 (2020)

    Google Scholar 

  32. Wang, S., et al.: Augmented reality as a telemedicine platform for remote procedural training. Sensors 17(10), 2294 (2017)

    Article  Google Scholar 

  33. Google glass. https://www.google.com/glass/start/

  34. HTC Vive PRO. https://www.vive.com/us/product/vive-pro/

  35. Misrosoft HoloLens. https://www.microsoft.com/pl-pl/hololens

  36. Oclus Rift. https://www.oculus.com/rift/?locale=pl_PL

  37. Proniewska, K., Dołęga-Dołęgowski, D., Dudek, D.: A holographic doctors’ assistant on the example of a wireless heart rate monitor. Bio-Algorithms Med-Syst. 14(2), UNSP 20180007 (2018)

    Google Scholar 

  38. Microsoft Azure Spatial Anchors. https://azure.microsoft.com/en-us/services/spatial-anchors/

  39. Orgon, D.C.: HoloLens and ViVE pro: virtual reality headsets. J. Med. Libr. Assoc. 107(1), 118–121 (2019)

    Google Scholar 

  40. Microsoft Mixed Reality Toolkit. https://docs.microsoft.com/en-us/windows/mixed-reality/mrtk-getting-started

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaudia Proniewska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Proniewska, K., Pręgowska, A., Dolega-Dolegowski, D., Chmiel, J., Dudek, D. (2020). Three-Dimensional Operating Room with Unlimited Perspective. In: Dziech, A., Mees, W., Czyżewski, A. (eds) Multimedia Communications, Services and Security. MCSS 2020. Communications in Computer and Information Science, vol 1284. Springer, Cham. https://doi.org/10.1007/978-3-030-59000-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59000-0_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58999-8

  • Online ISBN: 978-3-030-59000-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics