Skip to main content

Selective Laser Melting of Reflective Optics

  • Chapter
  • First Online:
3D Printing of Optical Components

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 233))

Abstract

Reflective optics are tremendously useful optical components due to their negligible chromatic aberrations when guiding light or forming light distributions. Using Additive manufacturing to realize freeform reflectors with additional functionality increases the potential of these components for highly efficient optical systems. In order to maintain the optical function of such reflectors, the relation between process parameters and part function needs to be accessible. This work describes a method to identify such relations, and the resulting efficiency is simulated and validated with additively manufactured samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sweeney, M., et al. (2015). Application and testing of Additive manufacturing for mirrors and precision structures. In M. Krödel, J. L. Robichaud, & W. A. Goodman (Eds.), Material technologies and applications to optics, structures, components, and sub-systems II (p. 957406). Bellingham: SPIE.

    Google Scholar 

  2. Jiang, J. B., et al. (2006). Design and fabrication of freeform reflector for automotive headlamp. In 2nd international conference on power electronics systems and applications (pp. 220–224). Piscataway: IEEE.

    Google Scholar 

  3. Mici, J., et al. (2015). Optomechanical performance of 3D-printed mirrors with embedded cooling channels and substructures. In A. E. Hatheway, editor. Optomechanical engineering SPIE. S. 957306 .

    Google Scholar 

  4. Hilpert, E., et al. (2018). Precision manufacturing of a lightweight mirror body made by selective laser melting. Precision Engineering, 53, 310–317.

    Article  Google Scholar 

  5. Wolf, A.. (2016). Laserscheinwerfer für Kraftfahrzeuge. Garbsen: TEWISS—Technik und Wissen GmbH Verlag. isbn: 978-3-95900-121-2.

    Google Scholar 

  6. Roth, K. (2000). “Konstruieren mit Konstruktionskatalogen”, Band I: Konstruktionslehre (3.Aufl. ed.). Berlin: Springer-Verlag.

    Book  Google Scholar 

  7. Elson, J. M., Rahn, J. P., & Bennett, J. M. (1983). Relationship of the total integrated scattering from multilayer-coated optics to angle of incidence, polarization, correlation length, and roughness cross-correlation properties. Applied Optics, 22, 3207–3219.

    Article  ADS  Google Scholar 

  8. Bass, M. (1995). Handbook of optics. New York: McGraw-Hill.

    Google Scholar 

  9. Lippert, R. B., Leuteritz, G., & Lachmayer, R. (2017). An approach to implement design for Additive manufacturing in engineering studies. In Proceedings of the 21st international conference on engineering design (ICED17), Vol. 5: Design for X, Design to X, Vancouver, Canada, 21–25 August, 2017. issn: 2220-4342.

    Google Scholar 

  10. Leuteritz, G., Rohling, M., & Lachmayer, R. (2018). Functional integration for additively manufactured reflectors. In DGaO proceedings.

    Google Scholar 

  11. Zghair, Y. A., & Leuteritz, G. (2017). Additive Repair von Multimaterialsystemen im Selektiven Laserstrahlschmelzen. In R. Lachmayer & R. B. Lippert (Eds.), Additive Manufacturing Quantifiziert—Visionäre Anwendungen und Stand der Technik (pp. 195–215). Springer Vieweg Verlag.

    Google Scholar 

  12. Kruth, J.-P., et al. (2005). Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyping Journal, 11, 26–36.

    Article  Google Scholar 

  13. Liu, B., et al. (2011). Investigation the effect of particle size distribution on processing parameters optimisation in selective laser melting process. Additive Manufacturing Research Group Loughborough, 227–238.

    Google Scholar 

  14. Wang, W., et al. (2016). Improved surface quality in 3D printing by optimizing the printing direction. Computer Graphics Forum, 35, 59–70.

    Article  Google Scholar 

  15. Held, M. P., et al. (2020). Hochauflösende LED-Scheinwerfer für Kraftfahrzeuge. Garbsen: TEWISS—Technik und Wissen GmbH Verlag. isbn:978-3-95900-439-8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Leuteritz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Leuteritz, G., Held, M., Lachmayer, R. (2021). Selective Laser Melting of Reflective Optics. In: Heinrich, A. (eds) 3D Printing of Optical Components. Springer Series in Optical Sciences, vol 233. Springer, Cham. https://doi.org/10.1007/978-3-030-58960-8_2

Download citation

Publish with us

Policies and ethics