Skip to main content

The HyperTrac Project: Recent Progress and Future Research Directions on Hypergraph Decompositions

  • Conference paper
  • First Online:
Integration of Constraint Programming, Artificial Intelligence, and Operations Research (CPAIOR 2020)

Abstract

Constraint Satisfaction Problems (CSPs) play a central role in many applications in Artificial Intelligence and Operations Research. In general, solving CSPs is NP-complete. The structure of CSPs is best described by hypergraphs. Therefore, various forms of hypergraph decompositions have been proposed in the literature to identify tractable fragments of CSPs. However, also the computation of a concrete hypergraph decomposition is a challenging task in itself. In this paper, we report on recent progress in the study of hypergraph decompositions and we outline several directions for future research.

This work was supported by the Austrian Science Fund (FWF): P30930-N35 in the context of the project “HyperTrac”. Georg Gottlob is a Royal Society Research Professor and acknowledges support by the Royal Society for the present work in the context of the project “RAISON DATA” (Project reference: ). Davide Mario Longo’s work was also supported by the FWF project W1255-N23.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aberger, C.R., Tu, S., Olukotun, K., Ré, C.: EmptyHeaded: a relational engine for graph processing. In: Proceedings of SIGMOD 2016, pp. 431–446 (2016)

    Google Scholar 

  2. Adler, I., Gottlob, G., Grohe, M.: Hypertree width and related hypergraph invariants. Eur. J. Comb. 28(8), 2167–2181 (2007)

    Article  MathSciNet  Google Scholar 

  3. Amroun, K., Habbas, Z., Aggoune-Mtalaa, W.: A compressed generalized hypertree decomposition-based solving technique for non-binary constraint satisfaction problems. AI Commun. 29(2), 371–392 (2016)

    Article  MathSciNet  Google Scholar 

  4. Aref, M., et al.: Design and implementation of the LogicBlox system. In: Proceedings of SIGMOD 2015, pp. 1371–1382 (2015)

    Google Scholar 

  5. Audemard, G., Boussemart, F., Lecoutre, C., Piette, C.: XCSP3: an XML-based format designed to represent combinatorial constrained problems (2016). http://www.xcsp.org/

  6. Berg, J., Lodha, N., Järvisalo, M., Szeider, S.: Maxsat benchmarks based on determining generalized hypertree-width. In: MaxSAT Evaluation 2017: Solver and Benchmark Descriptions, vol. B-2017-2, p. 22 (2017)

    Google Scholar 

  7. Bodlaender, H.L.: Discovering treewidth. In: Vojtáš, P., Bieliková, M., Charron-Bost, B., Sýkora, O. (eds.) SOFSEM 2005. LNCS, vol. 3381, pp. 1–16. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30577-4_1

  8. Bonifati, A., Martens, W., Timm, T.: An analytical study of large SPARQL query logs. VLDB J. 29, 655–679 (2019). https://doi.org/10.1007/s00778-019-00558-9

  9. Booth, K.E.C., Beck, J.C.: A constraint programming approach to electric vehicle routing with time windows. In: Rousseau, L.-M., Stergiou, K. (eds.) CPAIOR 2019. LNCS, vol. 11494, pp. 129–145. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19212-9_9

  10. Booth, K.E.C., Tran, T.T., Nejat, G., Beck, J.C.: Mixed-integer and constraint programming techniques for mobile robot task planning. IEEE Robot. Autom. Lett. 1(1), 500–507 (2016)

    Article  Google Scholar 

  11. Bouchitté, V., Todinca, I.: Treewidth and minimum fill-in: grouping the minimal separators. SIAM J. Comput. 31(1), 212–232 (2001)

    Article  MathSciNet  Google Scholar 

  12. Brailsford, S.C., Potts, C.N., Smith, B.M.: Constraint satisfaction problems: algorithms and applications. Eur. J. Oper. Res. 119(3), 557–581 (1999)

    Article  Google Scholar 

  13. Chandra, A.K., Merlin, P.M.: Optimal implementation of conjunctive queries in relational data bases. In: Proceedings of STOC 1977, pp. 77–90. ACM (1977)

    Google Scholar 

  14. Cohen, D.A., Jeavons, P., Gyssens, M.: A unified theory of structural tractability for constraint satisfaction problems. J. Comput. Syst. Sci. 74(5), 721–743 (2008)

    Article  MathSciNet  Google Scholar 

  15. Dechter, R.: Constraint Processing. Morgan Kaufmann Publishers Inc., San Francisco (2003)

    Google Scholar 

  16. Donovan, A.A.A., Kernighan, B.W.: The Go Programming Language. Addison-Wesley Professional, Boston (2015)

    Google Scholar 

  17. Dzulfikar, M.A., Fichte, J.K., Hecher, M.: The PACE 2019 parameterized algorithms and computational experiments challenge: the fourth iteration. In: Proceedings of IPEC 2019, Leibniz International Proceedings in Informatics (LIPIcs), vol. 148, pp. 25:1–25:23. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2019)

    Google Scholar 

  18. Fichte, J.K., Hecher, M., Lodha, N., Szeider, S.: An SMT approach to fractional hypertree width. In: Hooker, J. (ed.) CP 2018. LNCS, vol. 11008, pp. 109–127. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98334-9_8

  19. Fischl, W., Gottlob, G., Longo, D.M., Pichler, R.: HyperBench: a benchmark and tool for hypergraphs and empirical findings. In: Proceedings of PODS 2019, pp. 464–480. ACM (2019)

    Google Scholar 

  20. Fischl, W., Gottlob, G., Pichler, R.: General and fractional hypertree decompositions: hard and easy cases. In: Proceedings of PODS 2018, pp. 17–32. ACM (2018)

    Google Scholar 

  21. Gange, G., Harabor, D., Stuckey, P.J.: Lazy CBS: implicit conflict-based search using lazy clause generation. In: Proceedings of ICAPS 2019, pp. 155–162. AAAI Press (2019)

    Google Scholar 

  22. Geibinger, T., Mischek, F., Musliu, N.: Investigating constraint programming for real world industrial test laboratory scheduling. In: Rousseau, L.-M., Stergiou, K. (eds.) CPAIOR 2019. LNCS, vol. 11494, pp. 304–319. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19212-9_20

  23. Ghionna, L., Granata, L., Greco, G., Scarcello, F.: Hypertree decompositions for query optimization. In: Proceedings of ICDE 2007, pp. 36–45. IEEE Computer Society (2007)

    Google Scholar 

  24. Ghionna, L., Greco, G., Scarcello, F.: H-DB: a hybrid quantitative-structural SQL optimizer. In: Proceedings of CIKM 2011, pp. 2573–2576. ACM (2011)

    Google Scholar 

  25. Gottlob, G., Hutle, M., Wotawa, F.: Combining hypertree, bicomp, and hinge decomposition. In: Proceedings of ECAI 2002, pp. 161–165. IOS Press (2002)

    Google Scholar 

  26. Gottlob, G., Lanzinger, M., Pichler, R., Razgon, I.: Complexity analysis of generalized and fractional hypertree decompositions. CoRR abs/2002.05239 (2020). https://arxiv.org/abs/2002.05239

  27. Gottlob, G., Leone, N., Scarcello, F.: A comparison of structural CSP decomposition methods. Artif. Intell. 124(2), 243–282 (2000)

    Article  MathSciNet  Google Scholar 

  28. Gottlob, G., Leone, N., Scarcello, F.: Hypertree decompositions and tractable queries. J. Comput. Syst. Sci. 64(3), 579–627 (2002)

    Article  MathSciNet  Google Scholar 

  29. Gottlob, G., Miklós, Z., Schwentick, T.: Generalized hypertree decompositions: NP-hardness and tractable variants. J. ACM 56(6), 30:1–30:32 (2009)

    Google Scholar 

  30. Gottlob, G., Okulmus, C., Pichler, R.: Fast and parallel decomposition of constraints satisfaction problems. In: Proceedings of IJCAI 2020, pp. 1155–1162 (2020)

    Google Scholar 

  31. Gottlob, G., Samer, M.: A backtracking-based algorithm for hypertree decomposition. ACM J. Expe. Algorithmics 13 (2008)

    Google Scholar 

  32. Grohe, M., Marx, D.: Constraint solving via fractional edge covers. ACM Trans. Algorithms 11(1), 4:1–4:20 (2014)

    Google Scholar 

  33. Habbas, Z., Amroun, K., Singer, D.: A forward-checking algorithm based on a generalised hypertree decomposition for solving non-binary constraint satisfaction problems. J. Exp. Theor. Artif. Intell. 27(5), 649–671 (2015)

    Article  Google Scholar 

  34. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–677 (1978)

    Article  Google Scholar 

  35. Jain, S., Moritz, D., Halperin, D., Howe, B., Lazowska, E.: SQLShare: results from a multi-year SQL-as-a-service experiment. In: Proceedings of SIGMOD 2016, pp. 281–293. ACM (2016)

    Google Scholar 

  36. Korhonen, T.: Potential maximal cliques parameterized by edge clique cover. CoRR abs/1912.10989 (2019). https://arxiv.org/abs/1912.10989

  37. Korhonen, T., Berg, J., Järvisalo, M.: Solving graph problems via potential maximal cliques: an experimental evaluation of the Bouchitté-Todinca algorithm. ACM J. Exp. Algorithmics 24(1), 1.9:1–1.9:19 (2019)

    Google Scholar 

  38. Korimort, T.: Heuristic hypertree decomposition. Ph.D. thesis, Vienna University of Technology (2003)

    Google Scholar 

  39. Laborie, P., Rogerie, J., Shaw, P., Vilím, P.: IBM ILOG CP optimizer for scheduling - 20+ years of scheduling with constraints at IBM/ILOG. Constraints Int. J. 23(2), 210–250 (2018)

    Article  MathSciNet  Google Scholar 

  40. Lalou, M., Habbas, Z., Amroun, K.: Solving hypertree structured CSP: sequential and parallel approaches. In: Proceedings of RCRA@AI*IA 2009, CEUR Workshop Proceedings, vol. 589 (2009). CEUR-WS.org

    Google Scholar 

  41. Lam, E., Hentenryck, P.V., Kilby, P.: Joint vehicle and crew routing and scheduling. Transp. Sci. 54(2), 488–511 (2020)

    Google Scholar 

  42. Leis, V., et al.: Query optimization through the looking glass, and what we found running the join order benchmark. VLDB J. 27(5), 643–668 (2018)

    Article  Google Scholar 

  43. Leone, N., Mazzitelli, A., Scarcello, F.: Cost-based query decompositions. In: Proceedings of SEBD 2002, pp. 390–403 (2002)

    Google Scholar 

  44. Lovász, L.: On the ratio of optimal integral and fractional covers. Discret. Math. 13(4), 383–390 (1975)

    Article  MathSciNet  Google Scholar 

  45. Musliu, N., Schutt, A., Stuckey, P.J.: Solver independent rotating workforce scheduling. In: van Hoeve, W.-J. (ed.) CPAIOR 2018. LNCS, vol. 10848, pp. 429–445. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93031-2_31

  46. Pottinger, R., Halevy, A.Y.: Minicon: a scalable algorithm for answering queries using views. VLDB J. 10(2–3), 182–198 (2001). https://doi.org/10.1007/s007780100048

    Article  MATH  Google Scholar 

  47. Raedt, L.D., Guns, T., Nijssen, S.: Constraint programming for data mining and machine learning. In: Proceedings of AAAI 2010. AAAI Press (2010)

    Google Scholar 

  48. Rossi, F., Van Beek, P., Walsh, T.: Handbook of Constraint Programming. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  49. Samer, M., Veith, H.: Encoding treewidth into SAT. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 45–50. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02777-2_6

  50. Schidler, A., Szeider, S.: Computing optimal hypertree decompositions. In: Proceedings of ALENEX 2020, pp. 1–11. SIAM (2020)

    Google Scholar 

  51. Shaw, P.: Using constraint programming and local search methods to solve vehicle routing problems. In: Maher, M., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, pp. 417–431. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49481-2_30

  52. Transaction Processing Performance Council (TPC): TPC-H decision support benchmark (2014). http://www.tpc.org/tpch/default.asp

  53. Tsang, E.: Foundations of Constraint Satisfaction. Academic Press Limited, Cambridge (1993)

    Google Scholar 

  54. Verhaeghe, H., Nijssen, S., Pesant, G., Quimper, C., Schaus, P.: Learning optimal decision trees using constraint programming. In: Proceedings of BNAIC 2019. CEUR Workshop Proceedings, vol. 2491(2019). CEUR-WS.org

    Google Scholar 

  55. Yannakakis, M.: Algorithms for acyclic database schemes. In: Proceedings of VLDB 1981, pp. 82–94 (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Mario Longo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gottlob, G., Lanzinger, M., Longo, D.M., Okulmus, C., Pichler, R. (2020). The HyperTrac Project: Recent Progress and Future Research Directions on Hypergraph Decompositions. In: Hebrard, E., Musliu, N. (eds) Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2020. Lecture Notes in Computer Science(), vol 12296. Springer, Cham. https://doi.org/10.1007/978-3-030-58942-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58942-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58941-7

  • Online ISBN: 978-3-030-58942-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics