Skip to main content

Agronomy of ‘Metal Crops’ Used in Agromining

  • Chapter
  • First Online:
Agromining: Farming for Metals

Part of the book series: Mineral Resource Reviews ((MIRERE))

Abstract

Agromining involves growing selected hyperaccumulator plant species (‘metal crops’) on low-grade ore bodies or mineralized (e.g. ultramafic) soils, or anthropogenic metal-rich materials (e.g. contaminated soils, mine spoils, industrial sludge), followed by harvesting and incineration of the biomass to produce a ‘bio-ore’ from which target metals or salts may be recovered. This chapter begins with an introduction section that clarifies the concepts of phytomining and agromining. We then acknowledge the role of agronomy in enhancing the metal yield of ‘metal crops’, with emphasis on Ni. Highlighted are the selection of sites section, potential agromining substrates and discussion of the role of metal phytoavailability in economic agromining. We present the criteria for selecting potential ‘metal crops’ and possible regions where these species are most suited for successful agromining operations. We then discuss thoroughly the experimentally demonstrated soil and plant management practices that have been proposed to increase biomass and the metal yield of ‘metal crops’. We report also on progress of the pioneering tropical agronomic trials. Finally, we provide a conclusion and present an outlook on the agronomy of ‘metal crops’ that may be used in agromining.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abou-Shanab RAI, Angle JS, Delorme TA, Chaney RL, Van Berkum P, Moawad H, Ghanem K, Ghozlan HA (2003) Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale. New Phytol 158:219–224

    Article  CAS  Google Scholar 

  • Abou-Shanab RAI, Angle JS, Chaney RL (2006) Bacterial inoculants affecting nickel uptake by Alyssum murale from low, moderate and high Ni soils. Soil Biol Biochem 38:2882–2889

    Article  CAS  Google Scholar 

  • Álvarez-López V, Prieto-Fernández Á, Cabello-Conejo MI, Kidd PS (2016) Organic amendments for improving biomass production and metal yield of Ni-hyperaccumulating plants. Sci Total Environ 548–549:370–379

    Article  CAS  Google Scholar 

  • Angle JS, Baker AJM, Whiting SN, Chaney RL (2003) Soil moisture effects on uptake of metals by Thlaspi, Alyssum, and Berkheya. Plant Soil 256:325–332

    Article  CAS  Google Scholar 

  • Angle JS, Chaney RL, Baker AJM, Li Y, Reeves R, Volk V, Roseberg R, Brewer E, Burke S, Nelkin J (2001) Developing commercial phytoextraction technologies: practical considerations. S Afr J Sci 97:619–623

    CAS  Google Scholar 

  • Baker AJM (1999) Revegetation of asbestos mine wastes. Princeton Architectural Press, New York, USA

    Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements: a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Bani A, Echevarria G, Sulçe S, Morel JL, Mullai A (2007) In-situ phytoextraction of Ni by a native population of Alyssum murale on an ultramafic site (Albania). Plant Soil 293:79–89

    Article  CAS  Google Scholar 

  • Bani A, Echevarria G, Montargès-Pelletier E, Gjoka F, Sulçe S, Morel JL (2014) Pedogenesis and nickel biogeochemistry in a typical Albanian ultramafic toposequence. Environ Monit Assess 186:4431–4442

    Article  CAS  Google Scholar 

  • Bani A, Echevarria G, Sulçe S, Morel JL (2015a) Improving the agronomy of Alyssum murale for extensive phytomining: a five-year field study. Int J Phytoremediation 17:117–127

    Article  CAS  Google Scholar 

  • Bani A, Echevarria G, Zhang X, Benizri E, Laubie B, Morel JL, Simonnot M-O (2015b) The effect of plant density in nickel-phytomining field experiments with Alyssum murale in Albania. Aust J Bot 63:72–77

    Article  CAS  Google Scholar 

  • Bani A, Imeri A, Echevarria G, Pavlova D, Reeves RD, Morel JL, Sulçe S (2013) Nickel hyperaccumulation in the serpentine flora of Albania. Fresen Environ Bull 22:1792–1801

    CAS  Google Scholar 

  • Barbaroux R, Plasari E, Mercier G, Simonnot MO, Morel JL, Blais JF (2012) A new process for nickel ammonium disulfate production from ash of the hyperaccumulating plant Alyssum murale. Sci Total Environ 423:111–119

    Article  CAS  Google Scholar 

  • Bennett FA, Tyler EK, Brooks RR, Greg PEH, Stewart RB (1998) Fertilisation of hyperaccumulators to enhance their potential for phytoremediation and phytomining. In Brooks RR (ed) Plants that hyperaccumulate heavy metals (pp 249–259). CAB International, Wallingford, Oxon, UK

    Google Scholar 

  • Booth EJ, Batchelor SE, Walker KC (1995) The effect of foliar-applied sulfur on individual glucosinolates in oilseed rape seed. Z Pflanz Bodenkunde 158:87–88

    Article  CAS  Google Scholar 

  • Broadhurst CL, Chaney RL, Angle JS, Maugel TK, Erbe EF, Murphy CA (2004a) Simultaneous hyperaccumulation of nickel, manganese, and calcium in Alyssum leaf trichomes. Environ Sci Technol 38:5797–5802

    Article  CAS  Google Scholar 

  • Broadhurst CL, Chaney RL, Angle JA, Erbe EF, Maugel TK (2004b) Nickel localization and response to increasing Ni soil levels in leaves of the Ni hyperaccumulator Alyssum murale. Plant Soil 265:225–242

    Article  CAS  Google Scholar 

  • Broadhurst CL, Tappero RV, Maugel TK, Erbe EF, Sparks DL, Chaney RL (2009) Interaction of nickel and manganese in accumulation and localization in leaves of the Ni hyperaccumulators Alyssum murale and Alyssum corsicum. Plant Soil 314:35–48

    Article  CAS  Google Scholar 

  • Broadhurst CL, Chaney RL (2016) Growth and metal accumulation of an Alyssum murale nickel hyperaccumulator ecotype co-cropped with Alyssum montanum and perennial ryegrass in serpentine soil. Front Plant Sci 7:451

    Article  Google Scholar 

  • Brooks RR, Chiarucci A, Jaffré T (1998) Revegetation and stabilisation of mine dumps and other degraded terrain. CAB International, Wallingford, UK

    Google Scholar 

  • Brooks RR (1987) Serpentine and its vegetation: a multidisciplinary approach. Dioscorides Press, Oregon, USA

    Google Scholar 

  • Brooks RR (1998) Plants that hyperaccumulate heavy metals: their role in phytoremediation, microbiology, archaeology, mineral exploration, and phytomining. CAB International, Wallingford, UK

    Book  Google Scholar 

  • Brooks RR, Wither ED (1977) Nickel accumulation by Rinorea bengalensis (Wall.) O.K. J Geochem Explor 7:295–300

    Article  CAS  Google Scholar 

  • Cabello-Conejo MI, Prieto-Fernández Á, Kidd PS (2014) Exogenous treatments with phytohormones can improve growth and nickel yield of hyperaccumulating plants. Sci Total Environ 494–495:1–8

    Article  CAS  Google Scholar 

  • Cassina L, Tassi E, Morelli E, Giorgetti L, Remorini D, Chaney RL, Barbafieri M (2011) Exogenous cytokinin treatments of an Ni hyper-accumulator, Alyssum murale, grown in a serpentine soil: implications for phytoextraction. Int J Phytoremediation 13:90–101

    Article  Google Scholar 

  • Centofanti T, Siebecker MG, Chaney RL, Davis AP, Sparks DL (2012) Hyperaccumulation of nickel by Alyssum corsicum is related to solubility of Ni mineral species. Plant Soil 359:71–83

    Article  CAS  Google Scholar 

  • Chaney RL (1983) Plant uptake of inorganic waste constituents. In: Parr JF, Marsh PB, Kla JM (eds) Land treatment of hazardous wastes. Noyes Data Corporation, Park Ridge, pp 50–76

    Google Scholar 

  • Chaney RL, Angle JS, Broadhurst CL, Peters CA, Tappero RV, Sparks DL (2007a) Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. J Environ Qual 36:1429–1433

    Article  CAS  Google Scholar 

  • Chaney RL, Angle JS, Li YM, Baker AJM (2007b) Recovering metals from soil. US Patent 7268273 B2, 11 Sept 2007

    Google Scholar 

  • Chaney RL, Chen KY, Li YM, Angle JS, Baker AJM (2008) Effects of calcium on nickel tolerance and accumulation in Alyssum species and cabbage grown in nutrient solution. Plant Soil 311:131–140

    Article  CAS  Google Scholar 

  • Chaney RL, Li YM, Brown SL, Homer FA, Malik M, Angle JS, Baker AJM, Reeves RD, Chin M (2000) Improving metal hyperaccumulator wild plants to develop commercial phytoextraction systems: approaches and progress. In: Terry N, Bañuelos G (eds) Phytoremediation of contaminated soil and water. CRC Press, Boca Raton, FL, USA, pp 129–158

    Google Scholar 

  • Chaney RL, Mahoney M (2014) Phytostabilization and phytomining: principles and successes. Paper 104. In: Proceedings of life of mines conference, Brisbane, Australia, 15–17 July 2014. Australian Institute of Mining and Metallurgy, Brisbane, Australia

    Google Scholar 

  • Chardot V, Massoura ST, Echevarria G, Reeves RD, Morel JL (2005) Phytoextraction potential of the nickel hyperaccumulators Leptoplax emarginata and Bornmuellera tymphaea. Int J Phytoremediation 7:323–335

    Article  CAS  Google Scholar 

  • Deng THB, Coquet C, Tang YT, Sterckeman T, Echevarria G, Estrade N, Morel JL, Qiu RL (2014) Nickel and zinc isotope fractionation in hyperaccumulating and nonaccumulating plants. Environ Sci Technol 48:11926–11933

    Article  CAS  Google Scholar 

  • Durand A, Piutti S, Rue M, Morel JL, Echevarria G, Benizri E (2016) Improving nickel phytoextraction by co-cropping hyperaccumulator plants inoculated by plant growth promoting rhizobacteria. Plant Soil 399:179–192

    Article  CAS  Google Scholar 

  • Echevarria G (2018) Genesis and behaviour of ultramafic soils and consequences for nickel biogeochemistry. In: van der Ent A, Echevarria G, Baker AJM, Morel JL (eds) Agromining: extracting unconventional resources from plants, mineral resource reviews series, Springer, Cham, pp 135–156

    Google Scholar 

  • Echevarria G, Morel JL, Fardeau JC, Leclerc-Cessac E (1998) Assessment of phytoavailability of nickel in soils. J Environ Qual 27:1064–1070

    Article  CAS  Google Scholar 

  • Echevarria G, Massoura ST, Sterckeman T, Becquer T, Schwartz C, Morel JL (2006) Assessment and control of the bioavailability of nickel in soils. Environ Toxicol Chem 25:643–651

    Article  CAS  Google Scholar 

  • Estrade N, Cloquet C, Echevarria G, Sterckeman T, Deng T, Tang Y, Morel JL (2015) Weathering and vegetation controls on nickel isotope fractionation in surface ultramafic environments (Albania). Earth Planet Sci Lett 423:24–35

    Article  CAS  Google Scholar 

  • Freeman JL, Persans MW, Nieman K, Albrecht C, Peer W, Pickering IJ, Salt DE (2004) Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Cell 16:2176–2191

    Article  CAS  Google Scholar 

  • Ghaderian SM, Ghasemi R, Hajihashemi F (2015) Interaction of nickel and manganese in uptake, translocation and accumulation by the nickel hyperaccumulator plant, Alyssum bracteatum (Brassicaceae). Aust J Bot 63:47–55

    Article  CAS  Google Scholar 

  • Gonneau G, Genevois N, Frérot H, Sirguey C, Sterckeman T (2014) Variation of trace metal accumulation, major nutrient uptake and growth parameters and their correlations in 22 populations of Noccaea caerulescens. Plant Soil 384:271–287

    Article  CAS  Google Scholar 

  • Howes AW, Slatter KA, Sim EA, Jones AN (1998) Rehabilitating nickel-contaminated soil at a base metal refinery using the nickel-hyperaccumulating plant species, Berkheya coddii. In: Waste processing and recycling in mineral and metallurgical industries III. Rao SR, Amaratunga LM, Richards GG, Kondos PD (eds) The Metallurgical Society of CIM

    Google Scholar 

  • Jiang C-A, Wu Q-T, Goudon R, Echevarria G, Morel JL (2015) Biomass and metal yield of co-cropped Alyssum murale and Lupinus albus. Aust J Bot 63:159–166

    Article  CAS  Google Scholar 

  • Kerkeb L, Krämer U (2003) The role of free histidine in xylem loading of nickel in Alyssum lesbiacum and Brassica juncea. Plant Physiol 131:716–724

    Article  CAS  Google Scholar 

  • Kidd PS, Bani A, Benizri E et al (2018) Developing sustainable agromining systems in agricultural ultramafic soils for nickel recovery. Front Environ Sci 6:44. https://doi.org/10.3389/fenvs.2018.00044

    Article  Google Scholar 

  • Krämer U, Grime GW, Smith JAC, Hawes CR, Baker AJM (1997) Micro-PIXE as a technique for studying nickel localization in leaves of the hyperaccumulator Alyssum lesbiacum. Nuclear Inst Methods Phys Res B 130:346–350

    Article  Google Scholar 

  • Kruckeberg AR (1991) Plant life of western North American ultramafics. Springer, The Netherlands

    Google Scholar 

  • Kukier U, Peters CA, Chaney RL, Angle JS, Roseberg RJ (2004) The effect of pH on metal accumulation in two Alyssum species. J Environ Qual 33:2090–2102

    Article  CAS  Google Scholar 

  • Küpper H, Zhao FJ, McGrath SP (1999) Cellular compartmentation of zinc in leaves of the hyperaccumulator Thlaspi caerulescens. Plant Physiol 119:305–311

    Article  Google Scholar 

  • Li YM, Chaney R, Brewer E, Roseberg R, Angle JS, Baker AJM, Reeves R, Nelkin J (2003a) Development of a technology for commercial phytoextraction of nickel: economic and technical considerations. Plant Soil 249:107–115

    Article  CAS  Google Scholar 

  • Li YM, Chaney RL, Brewer EP, Angle JS, Nelkin J (2003b) Phytoextraction of nickel and cobalt by hyperaccumulator Alyssum species grown on nickel-contaminated soils. Environ Sci Technol 37:1463–1468

    Article  CAS  Google Scholar 

  • Massoura ST, Echevarria G, Leclerc-Cessac E, Morel JL (2004) Response of excluder, indicator, and hyperaccumulator plants to nickel availability in soils. Aust J Soil Res 42:933–938

    Article  CAS  Google Scholar 

  • McCartha GL, Taylor CM, van der Ent A, Echevarria G, Navarrete Gutiérrez DM, Pollard AJ (2019) Phylogenetic and geographic distribution of nickel hyperaccumulation in neotropical Psychotria. Amer J Bot 106:1377–1385

    Article  CAS  Google Scholar 

  • Morel JL (2013) Using plants to “micro-mine” metals. In: Mollier P (ed) https://www.researchgate.net/publication/273203016_Des_plantes_pour_l%27extraction_des_metaux

  • Morel JL, Echevarria G, van der Ent A, Baker AJM (2017) Agromining: conclusions and outlook. In: 9th International Conference on Serpentine Ecology (ICSE), Tirana, Albania, 4–9 June 2017

    Google Scholar 

  • Morrey DR, Balkwill K, Balkwill MJ (1989) Studies on serpentine flora - preliminary analyses of soils and vegetation associated with serpentinite rock formations in the Southeastern Transvaal. S Afr J Bot 55:171–177

    Article  Google Scholar 

  • Na G, Salt DE (2011) Differential regulation of serine acetyltransferase is involved in nickel hyperaccumulation in Thlaspi goesingense. J Biol Chem 286:40423–40432

    Article  CAS  Google Scholar 

  • Navarrete Gutiérrez DM, Pons M-N, Cuevas Sánchez JA, Echevarria G (2018) Is metal hyperaccumulation occurring in ultramafic vegetation of central and southern Mexico? Ecol Res 33:641–649

    Article  CAS  Google Scholar 

  • Nkrumah PN, Baker AJM, Chaney RL, Erskine PD, Echevarria G, Morel JL, van der Ent A (2016) Current status and challenges in developing nickel phytomining: an agronomic perspective. Plant Soil 406:55–69

    Article  CAS  Google Scholar 

  • Nkrumah P, Chaney RL, Morel JL (2018a) Agronomy of ‘metal crops’ used in agromining. In: van der Ent A, Echevarria G, Baker AJM, Morel JL (eds) Agromining: extracting unconventional resources from plants, Mineral resource reviews series. Springer, Cham, Switzerland, pp 19–38

    Chapter  Google Scholar 

  • Nkrumah P, Echevarria G, Erskine P, van der Ent A (2018b) Phytomining: using plants to extract valuable metals from mineralised wastes and uneconomic resources. In: Clifford MJ, Perrons RK, Ali SH, Grice TA (eds) Extracting innovations: mining, energy, and technological change in the digital age. CRC Press, pp 313–324

    Google Scholar 

  • Nkrumah P, Echevarria G, Erskine PD, van der Ent A (2018c) Nickel hyperaccumulation in Antidesma montis-silam: from herbarium discovery to collection in the native habitat. Ecol Res 33:675–685

    Google Scholar 

  • Nkrumah PN, Echevarria G, Erskine PD, van der Ent A (2018d) Contrasting nickel and zinc hyperaccumulation in subspecies of Dichapetalum gelonioides from Southeast Asia. Sci Rep 8:9659. https://doi.org/10.1038/s41598-018-26859-7

    Article  CAS  Google Scholar 

  • Nkrumah PN, Tisserand R, Chaney RL, Baker AJM, Morel JL, Goudon R, Erskine PD, Echevarria G, van der Ent A (2019a) The first tropical ‘metal farm’: some perspectives from field and pot experiments. J Geochem Explor 198:114–122

    Article  CAS  Google Scholar 

  • Nkrumah PN, Echevarria G, Erskine PD, Chaney RL, Sumail S, van der Ent A (2019b) Growth effects in tropical nickel-agromining ‘metal crops’ in response to nutrient dosing. J Plant Nutr Soil Sci 182:715–728

    Article  CAS  Google Scholar 

  • Nkrumah PN, Echevarria G, Erskine PD, Chaney RL, Sumail S, van der Ent A (2019c) Soil amendments affecting nickel uptake and growth performance of tropical ‘metal crops’ used for agromining. J Geochem Explor 203:78–86

    Article  CAS  Google Scholar 

  • Nkrumah PN, Echevarria G, Erskine PD, Chaney RL, Sumail S, van der Ent A (2019d) Effect of nickel concentration and soil pH on metal accumulation and growth in tropical agromining ‘metal crops’. Plant Soil 443:27–39

    Article  CAS  Google Scholar 

  • Orłowska E, Przybyłowicz W, Orlowski D, Turnau K, Mesjasz-Przybyłowicz J (2011) The effect of mycorrhiza on the growth and elemental composition of Ni-hyperaccumulating plant Berkheya coddii Roessler. Environ Pollut 159:3730–3738

    Article  CAS  Google Scholar 

  • Perronnet K, Schwartz C, Gérard E, Morel JL (2000) Availability of cadmium and zinc accumulated in the leaves of Thlaspi caerulescens incorporated into soil. Plant Soil 227:257–263

    Article  CAS  Google Scholar 

  • Proctor J, Woodell SR (1975) The ecology of serpentine soils. Adv Ecol Res 9:255–366

    Article  Google Scholar 

  • Psaras GK, Constantinidis TH, Cotsopoulos B, Maneta Y (2000) Relative abundance of nickel in the leaf epidermis of eight hyperaccumulators: evidence that the metal is excluded from both guard cells and trichomes. Ann Bot 86:73–78

    Article  CAS  Google Scholar 

  • Reeves RD, Baker AJM, Borhidi A, Berazaín R (1996) Nickel-accumulating plants from the ancient serpentine soils of Cuba. New Phytol 133:217–224

    Article  CAS  Google Scholar 

  • Reeves RD, Brooks RR, Dudley TR (1983) Uptake of nickel by species of Alyssum, Bornmuellera, and other genera of old world Tribus Alysseae. Taxon 32:184–192

    Article  Google Scholar 

  • Reeves RD, Brooks RR, Press JR (1980) Nickel accumulation by species of Peltaria Jacq. (Cruciferae). Taxon 29:629–633

    Article  Google Scholar 

  • Reeves RD, Schwartz C, Morel JL, Edmondson J (2001) Distribution and metal-accumulating behavior of Thlaspi caerulescens and associated metallophytes in France. Int J Phytoremediation 3:145–172

    Article  CAS  Google Scholar 

  • Robinson BH, Brooks RR, Howes AW, Kirkman JH, Gregg PEH (1997) The potential of the high-biomass nickel hyperaccumulator Berkheya coddii for phytoremediation and phytomining. J Geochem Explor 60:115–126

    Article  CAS  Google Scholar 

  • Robinson BH, Brooks RR, Clothier BE (1999) Soil amendments affecting nickel and cobalt uptake by Berkheya coddii: potential use for phytomining and phytoremediation. Ann Bot 84:689–694

    Article  CAS  Google Scholar 

  • Rue M, Rees F, Simonnot M-O, Morel J-L (2019) Phytoextraction of Ni from a toxic industrial sludge amended with biochar. J Geochem Explor 196:173–181

    Article  CAS  Google Scholar 

  • Schwartz C, Sirguey C, Peronny S, Reeves RD, Bourgaud F, Morel JL (2006) Testing of outstanding individuals of Thlaspi caerulescens for Cd phytoextraction. Int J Phytoremediation 8:339–357

    Article  CAS  Google Scholar 

  • Séré G, Schwartz C, Ouvrard S, Sauvage C, Renat JC, Morel JL (2008) Soil construction: a step for ecological reclamation of derelict lands. J Soils Sediments 8:130–136

    Article  CAS  Google Scholar 

  • Shallari S, Echevarria G, Schwartz C, Morel JL (2001) Availability of nickel in soils for the hyperaccumulator Alyssum murale Waldst. & Kit. S Afr J Sci 97:568–570

    CAS  Google Scholar 

  • Siebielec G, Chaney RL, Kukier U (2007) Liming to remediate Ni contaminated soils with diverse properties and a wide range of Ni concentration. Plant Soil 299:117–130

    Article  CAS  Google Scholar 

  • Tappero R, Peltier E, Gräfe M, Heidel K, Ginder-Vogel M, Livi KJ, Rivers ML, Marcus MA, Chaney RL, Sparks DL (2007) Hyperaccumulator Alyssum murale relies on a different metal storage mechanism for cobalt than for nickel. New Phytol 175:641–654

    Article  CAS  Google Scholar 

  • van der Ent A, Baker AJM, Reeves RD, Chaney RL, Anderson CWN, Meech JA, Erskine PD, Simonnot M-O, Vaughan J, Morel J-L, Echevarria G, Fogliani B, Qiu R-L, Mulligan DR (2015a) Agromining: farming for metals in the future? Environ Sci Technol 49:4773–4780

    Article  CAS  Google Scholar 

  • van der Ent A, Cardace D, Tibbett M, Echevarria G (2018) Ecological implications of pedogenesis and geochemistry of ultramafic soils in Kinabalu Park (Malaysia). Catena 160:154–169

    Article  CAS  Google Scholar 

  • van der Ent A, Erskine P, Sumail S (2015b) Ecology of nickel hyperaccumulator plants from ultramafic soils in Sabah (Malaysia). Chemoecology 25:243–259

    Article  CAS  Google Scholar 

  • van der Ent A, Mulligan D (2015) Multi-element concentrations in plant parts and fluids of Malaysian nickel hyperaccumulator plants and some economic and ecological considerations. J Chem Ecol 41:396–408

    Article  CAS  Google Scholar 

  • van der Ent A, Nkrumah PN, Tibbett M, Echevarria G (2019) Evaluating soil extraction methods for chemical characterization of ultramafic soils in Kinabalu Park (Malaysia). J Geochem Explor 196:235–246

    Article  CAS  Google Scholar 

  • van der Ent A, van Balgooy M, van Welzen P (2016) Actephila alanbakeri (Phyllanthaceae): a new nickel hyperaccumulating plant species from localised ultramafic outcrops in Sabah (Malaysia). Bot Stud 57:6

    Google Scholar 

  • Walker RB (1948) Molybdenum deficiency in serpentine barren soils. Science 108:473–475

    Article  CAS  Google Scholar 

  • Walker RB (2001) Low molybdenum status of serpentine soils of western North America. S Afr J Sci 97:565–568

    CAS  Google Scholar 

  • Walker RB, Walker HM, Ashworth PR (1955) Calcium-magnesium nutrition with special reference to serpentine soils. Plant Physiol 30:214–221

    Article  CAS  Google Scholar 

  • Wild H (1974) Indigenous plants and chromium in Rhodesia. Kirkia 9:233–241

    Google Scholar 

  • Zhang L, Angle JS, Chaney RL (2007) Do high-nickel leaves shed by the nickel hyperaccumulator Alyssum murale inhibit seed germination of competing plants? New Phytol 173:509–516

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Nti Nkrumah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nkrumah, P.N., Chaney, R.L., Morel, J.L. (2021). Agronomy of ‘Metal Crops’ Used in Agromining. In: van der Ent, A., Baker, A.J., Echevarria, G., Simonnot, MO., Morel, J.L. (eds) Agromining: Farming for Metals. Mineral Resource Reviews. Springer, Cham. https://doi.org/10.1007/978-3-030-58904-2_2

Download citation

Publish with us

Policies and ethics