Skip to main content

Agromining from Secondary Resources: Recovery of Nickel and Other Valuable Elements from Waste Materials

  • Chapter
  • First Online:
Agromining: Farming for Metals

Abstract

Industrial activities produce a variety of metal-rich waste, which are often classified as hazardous due to high concentrations of metals such as Ni, Zn, Cu, Cr, Pb and Cd. Metals recycling from waste materials is still limited, especially from those waste types characterized by complex matrices and multi-metal contamination, with large amounts of metal-rich waste materials being discharged into the environment. Although several pathways of metal recovery from waste have been developed, landfilling often remains the most convenient alternative in terms of costs. In recent years, a new approach to metals recycling from waste materials has been investigated: agromining with hyperaccumulator plants on waste-derived substrates. Hyperaccumulator plants can isolate specific metals from multi-metal waste matrices and bioconcentrate target metals in their biomass. Specific characteristics of industrial waste might limit plant establishment and uptake of target metals; thus, the addition of amendments is required prior to plant cultivations as well as the construction of waste-derived artificial substrates. Research conducted to date has shown limited effectiveness of agromining when applied on certain metal-rich industrial waste materials, while promising results were obtained from other types of waste. Upscaling trials are currently underway to demonstrate the applicability of waste agromining for metals recycling within waste generation industrial facilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou-Shanab RAI, Angle JS, Chaney RL (2006) Bacterial inoculants affecting Ni uptake by Alyssum murale from low, moderate and high Ni soils. Soil Biol Biochem 38:2882–2889

    Article  CAS  Google Scholar 

  • Álvarez-López V, Prieto-Fernandez A, Janssen J, Herzig R, Vangronsveld J, Kidd PS (2016) Inoculation methods using Rhodococcus erythropolis strain P30 affects bacterial assisted phytoextraction capacity of Nicotiana tabacum. Int J Phytoremediation 18:406–415

    Article  CAS  Google Scholar 

  • Bani A, Echevarria G, Sulçe S, Morel JL (2015a) Improving the agronomy of Alyssum murale for extensive phytomining: a five-year field study. Int J Phytoremediation 17:117–127

    Article  CAS  Google Scholar 

  • Bani A, Echevarria G, Zhang X, Benizri E, Laubie B, Morel JL, Simonnot M-O (2015b) The effect of plant density in nickel-phytomining field experiments with Alyssum murale in Albania. Aust J Bot 63:72–77

    Article  CAS  Google Scholar 

  • Barbaroux R, Plasari E, Mercier G, Simonnot M-O, Morel JL, Blais JF (2012) A new process for nickel ammonium disulfate production from ash of the hyperaccumulating plant Alyssum murale. Sci Total Environ 423:111–119

    Article  CAS  Google Scholar 

  • Barnett S (2010) Nickel—a key material for innovation in a sustainable future. In: 2nd euro nickel conference. Informa Pty Ltd, London, UK, 32

    Google Scholar 

  • Bharagava RN, Mishra S (2018) Hexavalent chromium reduction potential of Cellulosimicrobium sp. isolated from common effluent treatment plant of tannery industries. Ecotox Environ Safety 147:102–109

    Article  CAS  Google Scholar 

  • Bosecker K (2001) Microbial leaching in environmental cleanup programmes. Hydrometallurgy 59:245–248

    Article  CAS  Google Scholar 

  • Chaney RL, Angle JS, Broadhurst CL, Peters CA, Tappero RV, Sparks DL (2007) Improved understanding of hyperaccumulation yields commercial phytoextration and phytomining technologies. J Environ Qual 36:1429–1443

    Article  CAS  Google Scholar 

  • Chaney RL, Baker AJM, Morel JL (2018) The long road to developing agromining/phytomining. In: van der Ent A, Echevarria G, Baker AJM, Morel JL (eds) Agromining: farming for metals: extracting unconventional resources using plants. Springer International Publishing, Cham, pp 1–17

    Google Scholar 

  • Chmielewski AG, Urbtiski WS, Migdal W (1997) Separation technologies for metals recovery from industrial wastes. Hydrometallurgy 45:333–344

    Article  CAS  Google Scholar 

  • Comino E, Whiting SN, Neumann PM, Baker AJM (2005) Salt (NaCl) tolerance in the Ni hyperaccumulator Alyssum murale and the Zn hyperaccumulator Thlaspi caerulescens. Plant Soil 270:91–99

    Article  CAS  Google Scholar 

  • Deng THB, Cloquet C, Tang YT, Sterckeman T, Echevarria G, Estrade N, Morel JL, Qiu RL (2014) Nickel and zinc isotope fractionation in hyperaccumulating and non-accumulating plants. Environ Sci Technol 48:11926–11933

    Article  CAS  Google Scholar 

  • Domka A, Rozpądek P, Ważny R, Turnau K (2019) Mucor sp.—an endophyte of Brassicaceae capable of surviving in toxic metal-rich sites. J Basic Microbiol 59:24–37

    Article  CAS  Google Scholar 

  • Ebbs SD, Kochian L (1997) Toxicity of zinc and copper to Brassica species: implications for phytoremediation. J Environ Qual 26:776–781

    Article  CAS  Google Scholar 

  • Echevarria G, Bani A, Benizri E, Kidd PS, Kisser J, Konstantinou M, Kyrkas D, Puschenreiter M, Tognacchini A (2017) LIFE Agromine: a European demonstration project for Ni agromining. In: Proceedings of the 14th international phytotechnologies conference, session 4E, part 1, bioremediation and bioeconomy, Montreal, Canada, pp 25–29

    Google Scholar 

  • EEA (2016) Prevention of hazardous waste in Europe—the status in 2015. European Environmental Agency Report n. 35/2016

    Google Scholar 

  • EEA (2019) Industrial Waste in Europe. Indicator assessment—data and maps. European environmental agency. Available on: https://www.eea.europa.eu/data-and-maps/indicators/industrial-wasteindicator/assessment-1

  • Eramet (2009). Annual reference document 2008. Eramet group, April 2009, Paris, France, www.eramet.fr

  • Escarré J, Lefèbvre C, Frérot H, Mahieu S, Noret N (2013) Metal concentration and metal mass of metallicolous, non metallicolous and serpentine Noccaea caerulescens populations, cultivated in different growth media. Plant Soil 370:197–221

    Article  CAS  Google Scholar 

  • European Commission (2002) Heavy metals in waste. Final report. Project ENV. E3/ETU/2000/0058

    Google Scholar 

  • European Commission (2020) Communication from the commission to the european parliament, the council, the european economic and social committee and the committee of the regions. A new circular economy action plan

    Google Scholar 

  • Eurostat (2019) Waste statistics—hazardous waste generation. Online publications, available on: https://ec.europa.eu/eurostat/statistics/explained/index.php/Waste_statistics#Hazardous_waste_generation

  • Glick B (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374

    Article  CAS  Google Scholar 

  • Grandlic CJ, Mendez MO, Chorover J, Machado B, Maier RM (2008) Plant growth-promoting bacteria for phytostabilization of mine tailings. Int J Environ Sci Technol 42:2079–2084

    CAS  Google Scholar 

  • Havlik T, Orac D, Petranikova M, Miskufova A, Kukurugya F, Takacova Z (2010) Leaching of copper and tin from used printed circuit boards after thermal treatment. J Hazard Mater 183:866–873

    Article  CAS  Google Scholar 

  • Hoque M, Philip O (2011) Biotechnological recovery of heavy metals from secondary sources—an overview. Mater Sci Eng C 31:57–66

    Article  CAS  Google Scholar 

  • Houzelot V, Laubie B, Pontvianne S, Simonnot MO (2017) Effect of up-scaling on the quality of ashes obtained from hyperaccumulator biomass by agromining. Chem Eng Res Des 120:26–33

    Article  CAS  Google Scholar 

  • Jadhav UU, Hocheng H (2012) A review of recovery of metals from industrial waste. J Achievements Mater Manufact Eng 54:2

    Google Scholar 

  • Kidd PS, Monterroso C (2005) Metal extraction by Alyssum serpyllifolium ssp. lusitanicum on mine-spoil soils from Spain. Sci Total Environ 336:1–11

    Article  CAS  Google Scholar 

  • Kidd PS, Barceló J, Bernal MP, Navari-Izzo F, Poschenreiter C (2009) Trace element behaviour at the root—soil interface: implications in phytoremediation. Environ Exp Bot 67:243–259

    Article  CAS  Google Scholar 

  • Kuffner M, Puschenreiter M, Wieshammer G, Gorfer M, Sessitsch A (2008) Rhizosphere bacteria affect growth and metal uptake of heavy metal accumulating willows. Plant Soil 304:35–44

    Article  CAS  Google Scholar 

  • Kumar K, Singh N, Behlh HM, Srivastava S (2008) Influence of plant growth promoting bacteria and its mutant on heavy metal toxicity in Brassica juncea grown in fly ash amended soil. Chemosphere 72:678–683

    Article  CAS  Google Scholar 

  • Lange B (2016) Tolérance et accumulation du cuivre et du cobalt—implication pour la phytoremdéiation des sols contaminés. Thèse de doctorat, Université Libre de Bruxelles, Université Picardie Jules Verne, France, 160 p

    Google Scholar 

  • Li Y-M, Chaney RL, Brewer EP, Roseberg R, Angle JS, Baker AJM, Reeves RD, Nelkin J (2003) Development of a technology for commercial phytoextraction of nickel: economic and technical considerations. Plant Soil 249:107–115

    Article  CAS  Google Scholar 

  • Liu X, Wu Q-T, Banks MK, Ebbs SD (2005) Phytoextraction of Zn and Cu from sewage sludge and impact on agronomic characteristics. J Environ Sci Health Part A Toxic/Hazard Subst Environ Eng 40(4):823–838

    CAS  Google Scholar 

  • Ma Y, Rajkumar M, Freitas H (2009) Inoculation of plant growth promoting bacterium Achromobacter xylosoxidans strain Ax10 for the improvement of copper phytoextraction by Brassica juncea. J Environ Manage 90:831–837

    Article  Google Scholar 

  • Ma Y, Prasad MNV, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–258

    Article  CAS  Google Scholar 

  • Massoura ST, Echevarria G, Becquer T, Ghanbaja J, LeClerc-Cessac E, Morel JL (2006) Control of nickel availability by nickel bearing minerals in natural and anthropogenic soils. Geoderma 136:28–37

    Article  CAS  Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663

    Article  CAS  Google Scholar 

  • Mudd GM (2009) Nickel sulfide versus laterite: the hard sustainability challenge remains. In: Proceedings of the 48th annual conference of metallurgists. Canadian Metallurgical Society, Sudbury, Ontario, Canada. August 2009

    Google Scholar 

  • Mudd GM (2010) Global trends and environmental issues in nickel mining: sulfides versus laterites. Ore Geol Revs 38:9–26

    Article  Google Scholar 

  • Nickel Institute (2018) https://www.nickelinstitute.org/

  • Nissim WG, Cincinelli A, Martellini T, Alvisi L, Palm E, Mancuso S, Azzarello E (2018) Phytoremediation of sewage sludge contaminated by trace elements and organic compounds. Env Res 164:356–366

    Article  CAS  Google Scholar 

  • Nkrumah PN, Tisserand R, Chaney RL, Baker AJM, Morel JL, Goudon R, Erskine PD, Echevarria G, van der Ent A (2019) The first tropical ‘metal farm’: some perspectives from field and pot experiments. J Geochem Explor 198:114–122

    Article  CAS  Google Scholar 

  • Nokman W, Benluvankar V, Packiam SM, Vincent S (2019) Screening and molecular identification of heavy metal resistant Pseudomonas putida S4 in tannery effluent wastewater. Biocat Agric Biotechnol 18:101052

    Article  Google Scholar 

  • Pardo T, Rodríguez-Garrido B, Saad RF, Soto-Vázquez JL, Loureiro-Viñas M, Prieto-Fernández A, Echevarria G, Benizri E, Kidd PS (2018) Assessing the agromining potential of Mediterranean nickel-hyperaccumulating plant species at field-scale in ultramafic soils under humid-temperate climate. Sci Total Environ 630:275–286

    Article  CAS  Google Scholar 

  • Pietrzak U, Uren NC (2011) Remedial options for copper-contaminated vineyard soils. Soil Res 49(1):44–55

    Article  CAS  Google Scholar 

  • Qiu JR, Guo XF, Cai QY, Liu W, Zhang MW, Wei ZB, Wu QT (2014) Phytotreatment of sewage sludge contaminated by heavy metals and PAHs by co-planting Sedum alfredii and Alocassia myrorrhiza. Int J Phytoremediation 16(1):1–13

    Article  CAS  Google Scholar 

  • Rees F, Simonnot M-O, Morel JL (2014) Short term effects of biochar on soil heavy metal mobility are controlled by intraparticle diffusion and soil pH increase. Euro J Soil Sci 65:149–161

    Article  CAS  Google Scholar 

  • Rees F, Germain C, Sterckeman T, Morel JL (2015) Plant growth and metal uptake by a non-hyperaccumulating species (Lolium perenne) and a Cd-Zn hyperaccumulator (Noccaea caerulescens) in contaminated soils amended with biochar. Plant Soil 395:57–73

    Article  CAS  Google Scholar 

  • Rees F, Sterckeman T, Morel JL (2016) Root development of non-accumulating and hyperaccumulating plants in metal-contaminated soils amended with biochar. Chemosphere 182:1–196

    Google Scholar 

  • Rees F, Watteau F, Mathieu S, Turpault MP, Le Brech Y, Qiu R, Morel JL (2017) Metal immobilization on wood-derived biochars: distribution and reactivity of carbonate phases. J Environ Qual 46:845–854

    Article  CAS  Google Scholar 

  • Robinson BH, Brooks RR, Howes AW, Kirkman JH, Gregg PEH (1997a) The potential of the high-biomass nickel hyperaccumulator Berkheya coddii for phytoremediation and phytomining. J Geochem Explor 60:115–126

    Article  CAS  Google Scholar 

  • Robinson BH, Chiarucci A, Brooks RR, Petit D, Kirkman JH, Gregg PEH, De Dominicis V (1997b) The nickel hyperaccumulator Alyssum bertolonii as a potential agent for phytoremediation and phytomining of nickel. J Geochem Explor 59:75–86

    Article  CAS  Google Scholar 

  • Rosenkranz T, Kisser J, Wenzel WW, Puschenreiter M (2017) Waste or substrate for metal hyperaccumulating plants—the potential of phytomining on waste incineration bottom ash. Sci Total Environ 57:910–918

    Article  CAS  Google Scholar 

  • Rosenkranz T, Kidd P, Puschenreiter M (2018) Effect of bacterial inoculants on phytomining of metals from waste incineration bottom ash. Waste Manage 73:351–359

    Article  CAS  Google Scholar 

  • Rosenkranz T, Hipfinger C, Ridard C, Puschenreiter M (2019) A nickel phytomining trial using Odontarrhena chalcidica and Noccaea goesingensis on an Austrian serpentine soil. J Environ Manage 242:522–528

    Article  CAS  Google Scholar 

  • Rue M (2017) Hyperaccumulation du nickel sur des substrats élaborés pour l’agromine. PhD dissertation. Université de Lorraine, Nancy (France), 1e June 2017, 267 p

    Google Scholar 

  • Rue M, Rees F, Simonnot M-O, Morel JL (2019) Phytoextraction of Ni from a toxic industrial sludge amended with biochar. J Geochem Explor 196:173–181

    Article  CAS  Google Scholar 

  • Saad R, Bani A, Buteri A, Machinet G, Malaj E, Echevarria G (2019) Implementation of Ni-agromining on stainless steel based industrial sludges, unpublished results

    Google Scholar 

  • Silva JE, Soares D, Paiva AP, Labrincha JA, Castro F (2005) Leaching behaviour of a galvanic sludge in sulphuric acid and ammoniacal media. J Hazard Mater B121:195–202

    Article  CAS  Google Scholar 

  • Syed S (2006) A green technology for recovery of gold from non-metallic secondary sources. Hydrometallurgy 82:48–53

    Article  CAS  Google Scholar 

  • Thijs S, Sillen W, Rineau F, Weyens N, Vangronsveld J (2016) Towards an enhanced understanding of plant–microbiome interactions to improve phytoremediation: engineering the metaorganism. Front Microbiol 7:341

    Article  Google Scholar 

  • Tognacchini A, Rosenkranz T, van der Ent A, Machinet GE, Echevarria G, Puschenreiter M (2020) Nickel phytomining from industrial wastes: growing nickel hyperaccumulator plants on galvanic sludges. J Environ Manage 254:109798

    Article  CAS  Google Scholar 

  • US Geological Survey (2019) Mineral commodity summaries 2019: U.S. geological survey, 200 p. ISBN 978-1-4113-4283-5

    Google Scholar 

  • van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362:319–334

    Article  CAS  Google Scholar 

  • van der Ent A, Baker AJM, Reeves RD, Chaney RL, Anderson CWN, Meech JA, Erskine PD, Simonnot M-O, Vaughan J, Morel JL, Echevarria G, Fogliani B, Qui R-L, Mulligan DR (2015) Agromining: farming for metals in the future? Environ Sci Technol 49:4773–4780

    Article  CAS  Google Scholar 

  • Vegliò F, Quaresima R, Fornari P, Ubaldini S (2003) Recovery of valuable metals from electronic and galvanic industrial wastes by leaching and electrowinning. Waste Manage 23(3):245–252

    Article  CAS  Google Scholar 

  • Verstraete W (2002) Environmental biotechnology for sustainability. J Biotechnol 94:93–100

    Article  CAS  Google Scholar 

  • Vilarinho C, Ribeiro A, Carneiro C, Castro F (2012) Recovery of copper and nickel hydroxide from galvanic sludge—pilot scale experiments. In: 4th international conference on engineering for waste and biomass valorisation, pp 1561–1566

    Google Scholar 

  • Wei M-S, Huang K-H (2001) Recycling and reuse of industrial wastes in Taiwan. Waste Manage 21:93–97

    Article  CAS  Google Scholar 

  • Wernick I, Themelis NJ (1998) Recycling metals for the environment. Annu Rev Energ Environ 23:465–497

    Article  Google Scholar 

  • Wu QT, Hei L, Wong JW, Schwartz C, Morel JL (2007) Co-cropping for phyto-separation of zinc and potassium from sewage sludge. Chemosphere 68:1954–1960

    Article  CAS  Google Scholar 

  • Zhang X, Laubie B, Houzelot V, Plasari E, Echevarria G, Simonnot M-O (2016) Increasing purity of ammonium nickel sulfate hexahydrate and production sustainability in a nickel phytomining process. Chem Eng Res Des 106:26–32

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alice Tognacchini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tognacchini, A. et al. (2021). Agromining from Secondary Resources: Recovery of Nickel and Other Valuable Elements from Waste Materials. In: van der Ent, A., Baker, A.J., Echevarria, G., Simonnot, MO., Morel, J.L. (eds) Agromining: Farming for Metals. Mineral Resource Reviews. Springer, Cham. https://doi.org/10.1007/978-3-030-58904-2_14

Download citation

Publish with us

Policies and ethics