Skip to main content

Temperature Dependence of Acousto-Optic Polarization Mode Conversion Peak Frequency and Efficiency

  • Conference paper
  • First Online:
International Youth Conference on Electronics, Telecommunications and Information Technologies

Abstract

Acousto-optic frequency shift modulators are widely used for well-known heterodyne signal processing algorithms in interferometric sensors. Output signal stability is very important for such modulators applications. For this reason temperature dependences of the polarization mode conversion peak frequency and efficiency of those modulators was tested in a climate chamber. It was shown that the shift of the polarization mode conversion peak frequency was about 0.1 MHz per 1 ℃ temperature change. Such behavior was theoretically explained by the temperature dependence of the difference between the effective refractive indices for polarization modes and the temperature dependence of the surface acoustic wave velocity on the X-cut lithium niobate substrate. Also it was shown that the change in the polarization mode conversion efficiency with temperature was due to a change in the surface acoustic wave excitation efficiency with the frequency, characterized by the frequency dependence of the real part of the interdigital transducer admittance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Kakio, Acousto-optic modulator driven by surface acoustic waves. Acta Phys. Pol., A 127(1), 15–19 (2015)

    Article  ADS  Google Scholar 

  2. N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, V. Laude, Acousto-optically tunable lithium niobate photonic crystal. Appl. Phys. Lett. 96(13), 131103 (2010)

    Article  ADS  Google Scholar 

  3. V.V. Kondalkar, Y. Lee, S.S. Yang, K. Lee, Highly diffractive, reversibly fast responsive gratings formulated through focused surface acoustic wave for holographic display. J. Mater. Sci.: Mater. Electron. 28(7), 5366–5374 (2017)

    Google Scholar 

  4. V.V. Kondalkar, G. Ryu, Y. Lee, K. Lee, Development of acousto-optic spatial light modulator unit for effective control of light beam intensity and diffraction angle in 3D holographic display applications. J. Micromech. Microeng. 28(7), 074001 (2018)

    Article  ADS  Google Scholar 

  5. L. Liokumovich, A. Medvedev, K. Muravyov, P. Skliarov, N. Ushakov, Signal detection algorithms for interferometric sensors with harmonic phase modulation: distortion analysis and suppression. Appl. Opt. 56(28), 7960–7968 (2017)

    Article  ADS  Google Scholar 

  6. L. Liokumovich, K. Muravyov, P. Skliarov, N. Ushakov, Signal detection algorithms for interferometric sensors with harmonic phase modulation: miscalibration of modulation parameters. Appl. Opt. 57(25), 7127–7134 (2018)

    Article  ADS  Google Scholar 

  7. Y. Park, K. Cho, Heterodyne interferometer scheme using a double pass in an acousto-optic modulator. Opt. Lett. 36(3), 331–333 (2011)

    Article  ADS  Google Scholar 

  8. P.M. Karavaev, I.V. Il’ichev, P.M. Agruzov, A.V. Tronev, A.V. Shamray, Polarization separation in titanium-diffused waveguides on lithium niobate substrates. Tech. Phys. Lett. 42(5), 513–516 (2016)

    Article  ADS  Google Scholar 

  9. M. Bazzan, C. Sada, Optical waveguides in lithium niobate: Recent developments and applications. Appl. Phys. Rev. 2(4), 040603 (2015)

    Article  ADS  Google Scholar 

  10. A.V. Varlamov, V.V. Lebedev, P.M. Agruzov, I.V. Ilichev, L.V. Shamrai, A.V. Shamrai, Acousto-optic frequency shift modulators with acoustic and optic waveguides on X-cut lithium niobate substrates. J. Phys: Conf. Ser. 1326(1), 012011 (2019)

    Google Scholar 

  11. J. Yang, H. Xu, C. Wen, C. Sun, Optimal design of integrated acousto-optic tunable filters based on investigation of SAW in acoustic waveguide, in Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications XII, vol. 6314, (2006), p. 63140U

    Google Scholar 

  12. V. Petrov, A. Medvedev, L. Liokumovich, A. Miazin, Fiber-optic polarization interferometric sensor for precise electric field measurements. Int. J. Mod. Phys. A 31(02n03), 1641032 (2016)

    Google Scholar 

  13. L.B. Liokumovich, A.V. Medvedev, V.M. Petrov, Fiber-optic polarization interferometer with an additional phase modulation for electric field measurements. Opt. Memory Neural Netw. 22(1), 21–27 (2013)

    Article  Google Scholar 

  14. G.J. Edwards, M. Lawrence, A temperature-dependent dispersion equation for congruently grown lithium niobate. Opt. Quantum Electron. 16(4), 373–375 (1984)

    Article  Google Scholar 

  15. S. Fieberg, L. Streit, J. Kiessling, P. Becker, L. Bohaty, F. Kühnemann, K. Buse, Lithium niobate: wavelength and temperature dependence of the thermo-optic coefficient in the visible and near infrared, in Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications XIV, vol. 9347, (2015), p. 93471C

    Google Scholar 

  16. D.L. Zhang, C.X. Qiu, W.H. Wong, E.Y.B. Pun, Relationship between refractive index increase and Ti4 + concentration in Ti: LiNbO3 waveguide fabricated by Ti4 + diffusion in near-stoichiometric LiNbO3 substrate. Mater. Res. Bull. 60, 771–777 (2014)

    Article  Google Scholar 

  17. P. Ganguly, J.C. Biswas, S.K. Lahiri, Analysis of titanium concentration and refractive index profiles of Ti: LiNbO 3 channel waveguide. J. Opt. 39(4), 175–180 (2010)

    Article  Google Scholar 

  18. C. Zhou, Y. Yang, H. Cai, T.L. Ren, M. Chan, C.Y. Yang, Temperature-compensated high-frequency surface acoustic wave device. IEEE Electron Device Lett. 34(12), 1572–1574 (2013)

    Article  ADS  Google Scholar 

  19. I.E. Kuznetsova, B.D. Zaitsev, S.G. Joshi, Temperature characteristics of acoustic waves propagating in thin piezoelectric plates, in 2001 IEEE Ultrasonics Symposium. Proceedings. An International Symposium, vol. 01CH37263, no. 1 (2001), pp. 157–160

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey V. Varlamov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Varlamov, A.V., Agrusov, P.M., Il’ichev, I.V., Lebedev, V.V., Shamrai, A.V., Stepanov, S.I. (2021). Temperature Dependence of Acousto-Optic Polarization Mode Conversion Peak Frequency and Efficiency. In: Velichko, E., Vinnichenko, M., Kapralova, V., Koucheryavy, Y. (eds) International Youth Conference on Electronics, Telecommunications and Information Technologies. Springer Proceedings in Physics, vol 255. Springer, Cham. https://doi.org/10.1007/978-3-030-58868-7_34

Download citation

Publish with us

Policies and ethics