Skip to main content

Cubic Equations of State

  • Chapter
  • First Online:
Thermophysical Properties of Heavy Petroleum Fluids

Abstract

In the previous Chapter, the thermodynamic potentials and the equilibrium criteria were obtained as a function of the fugacity and activity coefficients. In turn, the fugacity coefficient was expressed as a function of the two sets of measurable variables. The former consists of temperature, pressure and composition, while the latter consists of temperature, volume and composition. In either case, an equation of state is needed in order to obtain practical expressions. In this manuscript, two equations of state will be outlined, emphasizing applications to hydrocarbon mixtures in general and heavy petroleum fluids in particular.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CEoS:

Cubic Equation of State

GCVOL:

Group-Contribution-Volume

HR:

Huron Vidal

MHV1:

Modified Huron-Vidal of order one

MHV2:

Modified Huron-Vidal of order two

NRTL:

Non-Random-Two-Liquid

PSRK:

Predictive SRK equation of state

UMR:

Universal mixing rule

UNIFAC:

Universal quasi-chemical functional group activity coefficient

VTPR:

Volume translated Peng Robinson

\( \left( {Z_{1} } \right) \) :

Roots for vapor phase (largest)

\( \left( {Z_{2} } \right) \) :

Roots for liquid phase (smallest)

a :

Attractive forces between molecules

\( \tilde{A}^{E} \) :

Helmholtz free energy molar excess

\( A,B \) :

Dimensionless numbers (Eqs. (3.43.6))

\( a_{i}^{{\prime }} \) :

Partial derivatives (Eq. (3.33))

\( A_{mc} \) :

CEoS parameters

\( a_{mn} \) :

Interaction parameters for PSRK

b :

Co-volume

B :

Dimensionless co-volume

\( b_{i}^{{\prime }} \) :

Partial derivatives (Eq. (3.34))

\( b_{mn} \) :

Interaction parameters for PSRK

C :

Components

\( c_{1} ,c_{2} ,c_{3} \) :

Coefficients (Eq. (3.3))

\( c_{mn} \) :

Interaction parameters for PSRK

D :

Discriminant

\( E_{ij} \) :

Binary interaction parameter Peneloux and Abdoul

F :

Function

\( f_{i} \) :

Fugacity

\( f_{il} \) :

Occurrence fraction of functional group

\( k_{0} ,k_{1} ,k_{2} ,k_{4} \) :

Constants (Eq. (3.48))

\( k_{ij} \) :

Binary interaction parameters

M :

Molecular weight

Q :

Numbers of the formula of Cardiano

q :

Function (Eq. (3.73))

\( q_{1} \) :

MHV1 parameter

\( q_{i} \) :

Pure-component parameter

\( Q_{k} \) :

Relative group area

\( r_{i} \) :

Pure-component parameter

\( R_{k} \) :

Relative group volume

S :

Real root

s :

Volume translation of component

\( S_{j} \) :

Specific gravity

T :

Real root

\( T_{bj} \) :

Normal boiling temperature

U :

Numbers of the formula of Cardiano

\( u,v \) :

Parameters of Cubic Equations of State

\( x_{i} \) :

Molar fraction

\( X_{m} \) :

Group mole fraction

\( \alpha \) :

CEoS parameters

\( \alpha_{f} \) :

Empirical dimensionless function

\( \alpha_{ij} , g_{ij} , g_{jj} \) :

Binary interaction parameters (Eq. (3.62))

\( \beta \) :

CEoS parameters

\( \gamma_{i} \) :

Activity coefficient

\( \gamma_{i}^{comb} \) :

Combinatorial contribution

\( \gamma_{i}^{FH} \) :

Flory-Huggins contribution

\( \gamma_{i}^{resi} \) :

Residual contribution

\( \gamma_{i}^{SG} \) :

Staverman-Guggenheim contribution

\( \varGamma_{k} \) :

Activity coefficient corresponding to the functional group k

\( \delta_{i} \) :

Relationship beteewn \( a_{i} \), \( b_{i} \)

\( \epsilon \) :

CEoS-dependent parameter

\( \epsilon^{*} \) :

Parameter (Eq. (3.84))

\( \eta \) :

Packing fraction

\( \eta_{mc} \) :

CEoS parameters

\( \varTheta_{i} \) :

Molecular surface fraction

\( \theta_{m} \) :

Area fraction

\( \rho \) :

Density

\( \sigma \) :

Molecular diameter

\( \upsilon_{ki} \) :

Number of times (occurrence)

\( \varphi \) :

CEoS-variable

\( \varPhi_{i} \) :

Molecular volume fraction

\( \phi_{i} \) :

Fugacity coefficient

\( \chi_{kl} , \psi_{kl} \) :

Contributions for the binary interaction

\( \varPsi_{mn} \) :

Binary main group interaction parameters

\( \omega \) :

Acentric factor

\( \varOmega_{a} , \varOmega_{b} \) :

CEoS-dependent coefficients

\( \sim \) :

Molar

0:

Pure component

\( \infty \) :

Infinite

\( C_{1i} , C_{2i} \) :

Coefficients of function of the molecular weight and acentric factor

\( d_{jk} \) :

Correlation parameters

E :

Excess property

Exp :

Experimental value

ext :

Extrapolated

ig :

Ideal gas

is :

Ideal solution

l :

Liquid

R :

Real

R :

Residual

resi :

Residual (Eq. (3.108))

v :

Vapor

\( \iota_{i} , \lambda_{j} , \chi_{j} \) :

Parameters of GCVOL

\( \hat{\rho } \) :

Mass density

References

  1. Valderrama JO (2003) The state of the cubic equations of state. Ind Eng Chem Res 42(8):1603–1618

    Article  Google Scholar 

  2. Soave G (1972) Equilibrium constants from a modified Redlich-Kwong equation of state. Chem Eng Sci 27(6):1197–1203

    Article  Google Scholar 

  3. Peng DY, Robinson DB (1976) A new two-constant equation of state. Ind Eng Chem Fundam 15(1):59–64

    Article  Google Scholar 

  4. Le Guennec Y, Lasala S, Privat R, Jaubert JN (2016) A consistency test for α-functions of cubic equations of state. Fluid Phase Equilib 427:513–538

    Article  Google Scholar 

  5. Poiling BE, Prausnitz JM, O’Conell JP (2001) The properties of gases and liquids, fifth. McGraw-Hill, New York, USA

    Google Scholar 

  6. Yaws CL (1999) Chemical properties handbook, New York, USA

    Google Scholar 

  7. Abovsky V (2014) Cubic equation of state: limit of expectations. Fluid Phase Equilib 376:141–153

    Article  Google Scholar 

  8. Bronshtein IN, Semendyayev KA, Musiol G, Muehlig H (2004) Handbook of mathematics. Springer, Berlin

    Book  Google Scholar 

  9. Michelsen ML, Mollerup J (2007) Thermodynamic models: fundamentals & computational aspects, second. TIE-LINE, Holte, Denmark

    Google Scholar 

  10. Bazúa ER (2018) Personal communication

    Google Scholar 

  11. Mathias PM, Boston JF, Watanasiri S (1984) Effective utilization of equations of state for thermodynamic properties in process simulation. AIChE J 30(2): 182–186

    Google Scholar 

  12. Lucia A, Taylor R (1992) Complex iterative solutions to process model equations? Comput Chem Eng 16:S387–S394

    Article  Google Scholar 

  13. Ma M, Chen S, Abedi J (2015) Binary interaction coefficients of asymmetric CH4, C2H6, and CO2 with High n-Alkanes for the simplified PC-SAFT correlation and prediction. Fluid Phase Equilib 405:114–123

    Article  Google Scholar 

  14. Tsonopoulos C, Dymond JH, Szafranski AM (1989) Second virial coefficients of normal alkanes, linear 1-Alkanols and their binaries. Pure Appl Chem 61(8): 1387–1394

    Google Scholar 

  15. Carreón-Calderón B, Uribe-Vargas V, Ramírez-De-Santiago M, Ramírez-Jaramillo E (2014) Thermodynamic characterization of heavy petroleum fluids using group contribution methods. Ind Eng Chem Res 53(13)

    Google Scholar 

  16. Castellanos Díaz O, Modaresghazani J, Satyro MA, Yarranton HW (2011) Modeling the phase behavior of heavy oil and solvent mixtures. Fluid Phase Equilib 304(1–2):74–85

    Article  Google Scholar 

  17. Agrawal P, Schoeggl FF, Satyro MA, Taylor SD, Yarranton HW (2012) Measurement and modeling of the phase behavior of solvent diluted bitumens. Fluid Phase Equilib 334:51–64

    Article  Google Scholar 

  18. Gao G, Daridon JL, Saint-Guirons H, Xans P, Montel F (1992) A simple correlation to evaluate binary interaction parameters of the Peng-Robinson equation of state: binary light hydrocarbon systems. Fluid Phase Equilib 74:85–93

    Article  Google Scholar 

  19. Wichterle I, Kobayashi R (1972) Vapor-Liquid equilibrium of methane—ethane system at low temperatures and high pressures. J Chem Eng Data 17(1):9–12

    Article  Google Scholar 

  20. Simnick JJ, Sebastian HM, Lin H, Chao K (1979) Gas-Liquid equilibrium in binary mixtures of Methane + m-Xylene, and Methane +m-Cresol. Fluid Phase Equilib 3:146–151

    Article  Google Scholar 

  21. Peters CJ, de Roo JL, de Swaan Arons J (1992) Measurements and calculations of phase equilibria in binary mixtures of Propane + Tetratriacontane. Fluid Phase Equilib 72(C): 251–266

    Google Scholar 

  22. Pedersen KS, Christensen PL, Shaikh JA (2015) Phase behavior of petroleum reservoir fluids, 2nd edn. CRC Press, Boca Raton, USA

    Google Scholar 

  23. Krejbjerg K, Pedersen KS (2006) Controlling VLLE equilibrium with a cubic EoS in heavy oil modeling, pp 1–15

    Google Scholar 

  24. Lopez-Echeverry JS, Reif-Acherman S, Araujo-Lopez E (2017) Peng-Robinson equation of state: 40 years through cubics. Fluid Phase Equilib 447:39–71

    Article  Google Scholar 

  25. Smith JM, Van Ness HC, Abbott MM, Swihart MT (2018) Introduccion to chemical engineering thermodynamics, 8th edn. McGraw-Hill, New York, USA

    Google Scholar 

  26. Solórzano-Zavala M, Barragán-Aroche F, Bazúa ER (1996) Comparative study of mixing rules for cubic equations of state in the prediction of multicomponent vapor-liquid equilibria. Fluid Phase Equilib 122(1–2):99–116

    Article  Google Scholar 

  27. Huron MJ, Vidal J (1979) New mixing rule in simple equations of state for representing vapour-liquid equilibria of strongly non-ideal mixtures. Fluid Phase Equilib 3:255–271

    Article  Google Scholar 

  28. Renon H, Prausnitz JM (1968) Local composition in thermodynamic excess functions for liquid mixtures. AIChE J 14:135–144

    Article  Google Scholar 

  29. Pedersen KS, Michelsen ML, Fredheim AO (1996) Phase equilibrium calculations for unprocessed well streams containing hydrate inhibitors. Fluid Phase Equilib 126(1):13–28

    Article  Google Scholar 

  30. Michelsen ML (1990) A modified huron-vidal mixing rule for cubic equations of state. Fluid Phase Equilib 60(1–2):213–219

    Article  Google Scholar 

  31. Dahl S, Michelsen ML (1990) High-Pressure vapor-liquid equilibrium with a UNIFAC-Based equation of state. AIChE J 36(12):1829–1836

    Article  Google Scholar 

  32. Holderbaum T, Gmehling J (1991) PSRK: a group contribution equation of state based on UNIFAC. Fluid Phase Equilib 70(2–3):251–265

    Article  Google Scholar 

  33. Fischer K, Gmehling J (1995) Further development, status and results of the PSRK method for the prediction of vapor-liquid equilibria and gas solubilities. Fluid Phase Equilib 112(1):1–22

    Article  Google Scholar 

  34. Ahlers J, Gmehling J (2002) Development of a universal group contribution equation of state. 2. Prediction of vapor-liquid equilibria for asymmetric systems. Ind Eng Chem Res 41(14):3489–3498

    Google Scholar 

  35. Fredenslund A, Jones RL, Prausnitz JM (1975) Group-Contribution estimation of activity coefficients in nonideal liquid mixtures. AIChE J 21(61):1086–1099

    Article  Google Scholar 

  36. Horstmann S, Jabłoniec A, Krafczyk J, Fischer K, Gmehling J (2005) PSRK group contribution equation of state: comprehensive revision and extension IV, including critical constants and α-Function parameters for 1000 components. Fluid Phase Equilib 227(2):157–164

    Article  Google Scholar 

  37. Weidlich U, Gmehling J (1987) A modified UNIFAC model. 1. Prediction of VLE, HE, and ∞. Ind Eng Chem Res 26(7):1372–1381

    Google Scholar 

  38. Gmehling J, Li J, Schiller M (1993) A modified UNIFAC model. 2. Present parameter matrix and results for different thermodynamic properties. Ind Eng Chem Res 32(1):178–193

    Google Scholar 

  39. Chen J, Fischer K, Gmehling J (2002) Modification of PSRK mixing rules and results for vapor-liquid equilibria, enthalpy of mixing and activity coefficients at infinite dilution. Fluid Phase Equilib 200(2):411–429

    Article  Google Scholar 

  40. Kontogeorgis GM, Vlamos PM (2000) An interpretation of the behavior of EoS/G(E) models for asymmetric systems. Chem Eng Sci 55(13):2351–2358

    Article  MATH  Google Scholar 

  41. Schmid B, Gmehling J (2012) Revised parameters and typical results of the VTPR group contribution equation of state. Fluid Phase Equilib 317:110–126

    Article  Google Scholar 

  42. Schmid B, Gmehling J (2016) Present status of the group contribution equation of state VTPR and typical applications for process development. Fluid Phase Equilib 425:443–450

    Article  Google Scholar 

  43. Voutsas E, Magoulas K, Tassios D (2004) Universal mixing rule for cubic equations of state applicable to symmetric and asymmetric systems: results with the Peng-Robinson equation of state. Ind Eng Chem Res 43:6238–6246

    Article  Google Scholar 

  44. Voutsas E, Louli V, Boukouvalas C, Magoulas K, Tassios D (2006) Thermodynamic property calculations with the universal mixing rule for EoS/GEmodels: results with the Peng-Robinson EoS and a UNIFAC model. Fluid Phase Equilib 241(1–2):216–228

    Article  Google Scholar 

  45. Peneloux A, Abdoul W, Rauzy E (1989) Fluid phase equilibria. Fluid Phase Equilib 41:115–132

    Article  Google Scholar 

  46. Abdoul W, Rauzy E, Péneloux A (1991) Group-Contribution equation of state for correlating and predicting thermodynamic properties of weakly polar and non-associating mixtures. Binary and multicomponent systems. Fluid Phase Equilib 68(C):47–102

    Google Scholar 

  47. Jaubert JN, Privat R (2010) Relationship between the binary interaction parameters (Kij) of the Peng-Robinson and those of the Soave-Redlich-Kwong equations of state: application to the definition of the PR2SRK model. Fluid Phase Equilib 295(1):26–37

    Article  Google Scholar 

  48. Jaubert JN, Privat R, Mutelet F (2010) Predicting the phase equilibria of synthetic petroleum fluids with the PPR78 approach. AIChE J 56(12):3225–3235

    Article  Google Scholar 

  49. Qian JW, Privat R, Jaubert JN (2013) Predicting the phase equilibria, critical phenomena, and mixing enthalpies of binary aqueous systems containing Alkanes, Cycloalkanes, Aromatics, Alkenes, and Gases (N2, CO2, H2S, H2) with the PPR78 equation of state. Ind Eng Chem Res 52(46):16457–16490

    Article  Google Scholar 

  50. Nasrifar K, Rahmanian N (2018) Equations of state with group contribution binary interaction parameters for calculation of two-phase envelopes for synthetic and real natural gas mixtures with heavy fractions. Oil Gas Sci Technol. 73(7):1–9

    Google Scholar 

  51. Gregorowtez J, de Loos TW, do Swaan Arena J (1992) The system Propane + Eicosane: P, T, and x measurements in the temperature range 288–358 K. J Chem Eng Data 37(3):356–358

    Google Scholar 

  52. Liu Q (2017) Bubble pressure measurement and modeling for N-Alkane + Aromatic Hydrocarbon binary mixtures. University of Alberta, Canada

    Google Scholar 

  53. Péneloux A, Rauzy E, Fréze R (1982) A consistent correction for Redlich-Kwong-Soave volumes. Fluid Phase Equilib 8(1):7–23

    Article  Google Scholar 

  54. Mathias PM, Naheiri T, Oh EM (1989) A density correction for the Peng-Robinson equation of state. Fluid Phase Equilib 47(1):77–87

    Article  Google Scholar 

  55. Baled H, Enick RM, Wu Y, Mchugh MA, Burgess W, Tapriyal D, Morreale BD (2012) Prediction of hydrocarbon densities at extreme conditions using volume-translated SRK and PR equations of state fit to high temperature, high pressure PVT data. Fluid Phase Equilib 317:65–76

    Article  Google Scholar 

  56. Carreón-Calderón B, Uribe-Vargas V, Ramírez-Jaramillo E, Ramírez-de-Santiago M (2012) Thermodynamic characterization of undefined petroleum fractions using group contribution methods. Ind Eng Chem Res 51:14188–14198

    Article  Google Scholar 

  57. Carreón-Calderón B, Uribe-Vargas V, Ramírez-de-Santiago M, Ramírez-Jaramillo E (2014) Thermodynamic characterization of heavy petroleum fluids using group contribution methods. Ind Eng Chem Res 53:5598–5607

    Article  Google Scholar 

  58. Ihmels EC, Gmehling J (2003) Extension and revision of the group contribution Method GCVOL for the prediction of pure compound liquid densities. Ind Eng Chem Res 42(2):408–412

    Article  Google Scholar 

  59. Riazi MR, Bishara A (2004) The impact of characterization methods on properties of reservoir fluids and crude oils: options and restrictions. J Pet Sci Eng 42:195–207

    Article  Google Scholar 

  60. Whitson CH, Brulé MR (2000) Phase behavior. Richarson, USA, SPE

    Book  Google Scholar 

  61. Riazi MR (2005) Characterization and properties of petroleum fractions. Philadelphia, USA, ASTM

    Book  Google Scholar 

  62. Kariznovi M, Nourozieh H, Abedi J (2010) Bitumen characterization and pseudocomponents determination for equation of state modeling. Energy Fuels 24(1):624–633

    Article  Google Scholar 

  63. Lee BI, Kesler MG (1975) A generalized thermodynamic correlation based on three-parameters corresponding states. AIChE J 21:510–527

    Article  Google Scholar 

  64. Khorasheh F, Khaledi R, Gray MR (1998) Computer generation of representative molecules for heavy hydrocarbon mixtures. Fuel 77(4):247–253

    Article  Google Scholar 

  65. Hudebine D, Verstraete JJ (2004) Molecular reconstruction of LCO gasoils from overall petroleum analyses. Chem Eng Sci 59(22–23):4755–4763

    Article  Google Scholar 

  66. Albahri TA (2005) Molecularly explicit characterization model (MECM) for light petroleum fractions. Ind Eng Chem Res 44(24):9286–9298

    Article  Google Scholar 

  67. Verstraete JJ, Schnongs P, Dulot H, Hudebine D (2010) Molecular reconstruction of heavy petroleum residue fractions. Chem Eng Sci 65(1):304–312

    Article  Google Scholar 

  68. Ahmad MI, Zhang N, Jobson M (2011) Molecular components-based representation of petroleum fractions. Chem Eng Res Des 89(4):410–420

    Article  Google Scholar 

  69. De Oliveira LP, Vazquez AT, Verstraete JJ, Kolb M (2013) Molecular reconstruction of petroleum fractions: application to vacuum residues from different origins. Energy Fuels 27(7):3622–3641

    Article  Google Scholar 

  70. Riizlcka V, Fredenslund A, Rasmussen P (1983) Representation of petroleum fractions by group contribution. Ind Eng Chem Process Des Dev 22(1):49–53

    Article  Google Scholar 

  71. Xu X, Jaubert JN, Privat R, Duchet-Suchaux P, Braña-Mulero F (2015) Predicting Binary-interaction parameters of cubic equations of state for petroleum fluids containing pseudo-components. Ind Eng Chem Res 54(10):2816–2824

    Article  Google Scholar 

  72. Twu CH (1984) An internally consistent correlations for predicting the critial properties and molecular weight of petroleum and coal-tar liquids. Fluid Phase Equilib 16:137–150

    Article  Google Scholar 

  73. Uribe-Vargas V, Carreón-Calderón B, Ramírez-Jaramillo E, Ramírez-de-Santiago M (2016) Thermodynamic characterization of undefined petroleum fractions of gas condensate using group contribution. Oil Gas Sci Technol 71(1)

    Google Scholar 

  74. Haghtalab A, Moghaddam AK (2016) Prediction of minimum miscibility pressure using the UNIFAC group contribution activity coefficient model and the LCVM mixing rule

    Google Scholar 

  75. Aguilar-Cisneros H, Uribe-Vargas V, Carreón-Calderón B, Domínguez-Esquivel JM, Ramirez-De-Santiago M (2017) Hydrogen solubility in heavy undefined petroleum fractions using group contributions methods. Oil Gas Sci Technol 72(1)

    Google Scholar 

  76. Aguilar-Cisneros H, Carreón-Calderón B, Uribe-Vargas V, Domínguez-Esquivel JM, Ramirez-de-Santiago M (2018) Predictive method of hydrogen solubility in heavy petroleum fractions using EOS/GEand group contributions methods. Fuel 224(January):619–627

    Article  Google Scholar 

  77. Joback KG, Reid RC (1987) Estimation of pure-component properties from group-contributions. Chem Eng Commun 57(233–243)

    Google Scholar 

  78. Marrero J, Gani R (2001) Group-Contribution based estimation of pure component properties. Fluid Phase Equilib 184:183–208

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernardo Carreón-Calderón .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Carreón-Calderón, B., Uribe-Vargas, V., Aguayo, J. (2021). Cubic Equations of State. In: Thermophysical Properties of Heavy Petroleum Fluids. Petroleum Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-58831-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58831-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58830-4

  • Online ISBN: 978-3-030-58831-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics