Skip to main content

Combined Photogrammetric and Laser Scanning Survey to Support Fluvial Sediment Transport Analyses

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2020 (ICCSA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12252))

Included in the following conference series:

  • 1472 Accesses

Abstract

This paper presents the contribution of digital surveying techniques for the estimation of fluvial sediment transport. The aim is to create predictive models able to minimize or reduce the hydrogeological hazard, especially before or during critical meteorological events. The case study is the Caldone stream, a watercourse located in the municipality of Lecco (Italy). Structure-from-Motion photogrammetry and terrestrial laser scanning techniques were used to collect metric data about the morphology of the riverbed. Data acquisition was carried out to create a digital model of visible and submerged parts of the riverbed. Then, a second area with a sedimentation pool was selected to monitor the variation of the depth induced by progressive accumulation of sediments. As the pool is constantly covered by water, a low-cost bathymetric drone was used coupling the measured depth values with total station measurements to track the drone. Finally, the paper describes the implementation of an on-line data delivery platform able to facilitate retrieval of heterogeneous geospatial data, which are used in the developed numerical model for sediment transport. This service aims at providing simplified access to specific map layers without requiring knowledge about data formats and reference systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bigagli, L., Santoro, M., Mazzetti, P., Nativi, S.: Architecture of a process broker for interoperable geospatial modeling on the web. ISPRS J. Geogr. Inf. 4(2), 647–660 (2015)

    Article  Google Scholar 

  2. Brambilla, D., Ivanov, V.I., Longoni, L., Papini, M.: Morphological variations in mountain streams as proxy for sediment transport: a case study. In: 19th International Multidisciplinary Scientific GeoConference SGEM 2019, pp. 411–418 (2019). https://doi.org/10.5593/sgem2019/3.1/s12.053

  3. Brambilla, D., Papini, M., Longoni, L.: Temporal and spatial variability of sediment transport in a mountain river: a preliminar investigation of the Caldone River, Italy. Geosciences 8(5), 163 (2018). https://doi.org/10.3390/geosciences8050163

    Article  Google Scholar 

  4. Brasington, J., Rumsby, B.T., McVey, R.A.: Monitoring and modelling morphological change in a braided gravel-bed river using high resolution GPS-based survey. Earth Surf. Process. Landf. 25, 973–990 (2000). https://doi.org/10.1002/1096-9837(200008)25:9%3c973:AID-ESP111%3e3.0.CO;2-Y

    Article  Google Scholar 

  5. Brewer, R.K.: Project planning and field support for NOS photobathymetry. Int. Hydrogr. Rev. 56(2), 55–66 (1979)

    Google Scholar 

  6. Dietrich, J.T.: Bathymetric structure-from-motion: extracting shallow stream bathymetry from multi-view stereo photogrammetry. Earth Surf. Proc. Landf. 42(2), 355–364 (2017). https://doi.org/10.1002/esp.4060

    Article  Google Scholar 

  7. Guerrero, M., Lamberti, A.: Flow field and morphology mapping using ADCP and multibeam techniques: survey in the Po River. J. Hydraul. Eng. 137, 1576–1587 (2011). https://doi.org/10.1061/(ASCE)HY.1943-7900.0000464

    Article  Google Scholar 

  8. Hillade, R.C., Raff, D.: Assessing the ability of airborne LiDAR to map river bathymetry. Earth Surf. Process. Landf. 33, 773–783 (2008)

    Article  Google Scholar 

  9. Javernick, L., Brasington, J., Caruso, B.: Modeling the topography of shallow braided rivers using Structure-from-Motion photogrammetry. Geomorphology 213, 166–182 (2014)

    Article  Google Scholar 

  10. Kasvi, E., Laamanen, L., Lotsari, E., Alho, P.: Flow patterns and morphological changes in a sandy meander bend during a flood - spatially and temporally intensive ADCP measurement approach. Water 9, 106 (2017)

    Article  Google Scholar 

  11. Kasvi, E., Salmela, J., Lotsari, E., Kumpula, T., Lane, S.N.: Comparison of remote sensing based approaches for mapping bathymetry of shallow, clear water rivers. Geomorphology 333, 180–197 (2019). https://doi.org/10.1016/j.geomorph.2019.02.017

    Article  Google Scholar 

  12. Kim, J.S., Baek, D., Seo, I.W., Shin, J.: Retrieving shallow stream bathymetry from UAV-assisted RGB imagery using a geospatial regression method. Geomorphology 341, 102–114 (2019). https://doi.org/10.1016/j.geomorph.2019.05.016

    Article  Google Scholar 

  13. Kinzel, P.J., Wrigt, C.W., Nelson, J.M., Burman, A.R.: Evaluation of an experimental LiDAR for surveying a shallow, braided, sand-bedded river. J. Hydraul. Eng. 133, 838–842 (2007)

    Article  Google Scholar 

  14. Kinzel, P.J., Legleiter, C.J., Nelson, J.M.: Mapping river bathymetry with a small footprint green LiDAR: applications and challenges. J. Am. Water Resour. Assoc. 49, 183–204 (2013)

    Article  Google Scholar 

  15. Koljonen, S., Huusko, A., Mäki-Petäys, A., Louhi, P., Muotka, T.: Assessing habitat suitability for juvenile Atlantic salmon in relation to in-stream restoration and discharge variability. Restor. Ecol. 21, 344–352 (2012)

    Article  Google Scholar 

  16. Lane, S.N., Richards, K.S., Chandler, J.H.: Developments in monitoring and modelling small-scale river bed topography. Earth Surf. Process. Landf. 19, 349–368 (1994). https://doi.org/10.1002/esp.3290190406

    Article  Google Scholar 

  17. Longoni, L., et al.: Monitoring riverbank erosion in mountain catchments using terrestrial laser scanning. Remote Sens. 8(3), paper no. 241, 22 p. (2016). https://doi.org/10.3390/rs8030241

  18. McKean, J., et al.: Remote sensing of channels and riparian zones with a narrow-beam aquatic-terrestrial LIDAR. Remote Sens. 1(4), 1065–1096 (2009). https://doi.org/10.3390/rs1041065

    Article  Google Scholar 

  19. Milne, J.A., Sear, D.A.: Modelling river channel topography using GIS. Int. J. Geogr. Inf. Sci. 11, 499–519 (1997)

    Article  Google Scholar 

  20. O’Neal, M.A., Pizzuto, J.E.: The rates and spatial patterns of annual riverbank erosion revealed through terrestrial laser-scanner surveys of the South River, Virginia. Earth Surface Process. Land. 36(5), 695–701 (2011). https://doi.org/10.1002/esp.2098

    Article  Google Scholar 

  21. Papini, M., Ivanov, V., Brambilla, D., Arosio, D., Longoni, L.: Monitoring bedload sediment transport in a pre-Alpine river: an experimental method. Rendiconti Online della Società Geologica Italiana 43, 57–63 (2017). https://doi.org/10.3301/ROL.2017.35

    Article  Google Scholar 

  22. Pavesi, F., et al.: EDI–A template-driven metadata editor for research data. J. Open Res. Soft. 4(1), 55–66 (2016)

    Google Scholar 

  23. Pepe, M., Fregonese, L., Scaioni, M.: Planning airborne photogrammetry and remote-sensing missions with modern platforms and sensors. Eur. J. Remote Sens. 51(1), 412–435 (2018). https://doi.org/10.1080/22797254.2018.1444945

    Article  Google Scholar 

  24. Previtali, M., Barazzetti, L., Scaioni, M.: Accurate 3D surface measurement of mountain slopes through a fully automated imaged-based technique. Earth Sci. Inf. 7(2), 109–122 (2014). https://doi.org/10.1007/s12145-014-0158-2

    Article  Google Scholar 

  25. Resop, J., Hession, W.: Terrestrial laser scanning for monitoring streambank retreat: comparison with traditional surveying techniques. J. Hydraul. Eng. 136(10), 794–798 (2010). https://doi.org/10.1061/(ASCE)HY.1943-7900.0000233

    Article  Google Scholar 

  26. Rutzinger, M., et al.: Training in innovative technologies for close-range sensing in alpine terrain. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. 4(2), 239–246 (2018). https://doi.org/10.5194/isprs-annals-iv-2-239-2018

  27. Scaioni, M.: Remote sensing for landslide investigations: from research into practice. Remote Sens. 5(11), 5488–5492 (2013). https://doi.org/10.3390/rs5115488

    Article  Google Scholar 

  28. Starek, M.J., Mitasova, H., Wegmann, K.W., Lyons, N.: Space-time cube representation of stream bank evolution mapped by terrestrial laser scanning. IEEE Geosci. Remote Sens. Lett. 10(6), 1369–1373 (2013). https://doi.org/10.1109/LGRS.2013.2241730

    Article  Google Scholar 

  29. Tomsett, C., Leyland, J.: Remote sensing of river corridors: a review of current trends and future directions. River Res Appl. 35, 779–803 (2019). https://doi.org/10.1002/rra.3479

    Article  Google Scholar 

  30. Tonina, D., et al.: Mapping river bathymetries: evaluating topobathymetric LiDAR survey. Earth Surf. Process. Landf. 44(2), 507–520 (2018). https://doi.org/10.1002/esp.4513

    Article  Google Scholar 

  31. Westoby, M.J., Brasington, J., Glasser, N.F., Hambrey, M.J., Reynolds, J.M.: ‘Structure-from-Motion’ photogrammetry: a low-cost, effective tool for geoscience applications. Geomorphology 179, 300–314 (2012)

    Article  Google Scholar 

  32. Woodget, A.S., Carbonneau, P.E., Visser, F., Maddock, I.P.: Quantifying sub-merged fluvial topography using hyperspatial resolution UAS imagery and structure from motion photogrammetry. Earth Surf. Proc. Landf. 40, 47–64 (2015)

    Article  Google Scholar 

  33. Rhee, D., Kim, Y., Kang, B., Kim, D.: Applications of unmanned aerial vehicles in fluvial remote sensing: an overview of recent achievements. KSCE J. Civil Eng. 1–15 (2017). https://doi.org/10.1007/s12205-017-1862-5

Download references

Acknowledgments

This work has been financed by Fondazione Cariplo in the framework of the “SMART-SED project: Sustainable MAnagement of sediment transpoRT in responSE to climate change conditions,” grant no. 2017–0722. The authors want to thank Laura Longoni and Davide Brambilla (Politecnico di Milano, Dept. of Environmental and Civil Eng.) for the coordination during the project and the development of the floating device used in the sedimentation pool. We want to thank you also to Valentina Conca and Claudio Sironi for their help during the on-site survey carried out for their thesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Barazzetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barazzetti, L., Valente, R., Roncoroni, F., Previtali, M., Scaioni, M. (2020). Combined Photogrammetric and Laser Scanning Survey to Support Fluvial Sediment Transport Analyses. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12252. Springer, Cham. https://doi.org/10.1007/978-3-030-58811-3_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58811-3_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58810-6

  • Online ISBN: 978-3-030-58811-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics