Skip to main content

Estimating Air Pollution Related Solar Insolation Reduction in the Assessment of the Commercial and Industrial Rooftop Solar PV Potential

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2020 (ICCSA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12250))

Included in the following conference series:

Abstract

Air pollution is a serious issue and it has been becoming increasingly urgent over last year, mainly as a result of its effects on human health. Recently, however, a number of scientific papers has appeared reporting on air pollution effects in other fields such as the photovoltaic energy generation and, notably, on the relation between the reduction of the solar insolation reaching the PV systems and PM2.5 concentrations in the air. In this study, the rooftop solar PV potential of commercial and industrial (C&I) buildings at regional scale has been estimated tacking into account the spatially distributed solar insolation reduction factor, due to the PM2.5 in the air. High resolution LiDAR data and advanced digital surface modeling techniques have been used for determining the available suitable rooftop area and estimating the technical solar PV potential of the C&I rooftops. For the C&I study area of Aversa Nord (South Italy), we find that the suitable rooftops have annually a total electric power potential of 50.75 \( \text{GWh}/year \). For this area, an annual average PM2.5 concentrations of about 13 μg/m3 results in a nearly 5% annual solar insolation reduction. Thus, if properly located, the large scale rooftop PV systems could significantly decrease primary energy consumption and contribute to reduce the CO2 emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Peters, I.M., Karthik, S., Liu, H., Buonassisi, T., Nobre, A.: Urban haze and photovoltaics. Energy Environ. Sci. 11, 3043–3054 (2018)

    Article  Google Scholar 

  2. Liu, H., et al.: The impact of haze on performance ratio and short-circuit current of PV systems in Singapore. IEEE J. Photovolt. 4, 1585–1592 (2014)

    Article  Google Scholar 

  3. Council of European Union: Directive (EU) 2018/2001 of the European Parliament and of the Council on the promotion of the use of energy from renewable sources (2018)

    Google Scholar 

  4. Bódis, K., Kougias, I., Jäger-Waldau, A., Taylor, N., Szabó, S.: A high-resolution geospatial assessment of the rooftop solar photovoltaic potential in the European Union. Renew. Sustain. Energy Rev. 114, 109309 (2019)

    Article  Google Scholar 

  5. Castillo, C.P., e Silva, F.B., Lavalle, C.: An assessment of the regional potential for solar power generation in EU-28. Energy Policy 88, 86–99 (2016)

    Google Scholar 

  6. Weiss, W., Biermayr, P: Potential of Solar Thermal in Europe, Report of the EU-funded project RESTMAC (2010)

    Google Scholar 

  7. Defaix, P., Van Sark, W., Worrell, E., de Visser, E.: Technical potential for photovoltaics on buildings in the EU-27. Sol. Energy 86, 2644–2653 (2012)

    Article  Google Scholar 

  8. Rodríguez, L.R., Duminil, E., Ramos, J.S., Eicker, U.: Assessment of the photovoltaic potential at urban level based on 3D city models: a case study and new methodological approach. Solar Energy 146, 264–275 (2017)

    Google Scholar 

  9. Nocerino M., et al.: Assessing the impact of Haze on solar energy potential using long term of PM2.5 concentration and solar insolation field data in Naples, Italy. In: Workshop AISEM 2020, LCNS in Electrical Engineering, Springer, (under review)

    Google Scholar 

  10. Freitas, S., Catita, C., Redweik, P., Brito, M.C.: Modelling solar potential in the urban environment: state-of-the-art review. Renew. Sustain. Energy Rev. 41, 915–931 (2015)

    Article  Google Scholar 

  11. Byrne, J., Taminiau, J., Kurdgelashvili, L., Kim, K.N.: A review of the solar city concept and methods to assess rooftop solar electric potential, with an illustrative application to the city of Seoul. Renew. Sustain. Energy Rev. 41, 830–844 (2015)

    Article  Google Scholar 

  12. Borfecchia, F., et al.: Remote sensing and GIS in planning photovoltaic potential of urban areas. Eur. J. Remote Sensing 47, 195–216 (2014). https://doi.org/10.5721/eujrs20144713

  13. Online report: A map showing potential solar energy production of commercial, industrial, and mixed used buildings in Minneapolis (2014). https://www.arcgis.com/home/item.html?id=b5d60dabc48b47828bc1dc4111ad253c

  14. Schallenberg-Rodríguez, J.: Photovoltaic techno-economical potential on roofs in regions and islands: the case of the Canary Islands. Methodological review and methodology proposal. Renew. Sustain. Energy Rev. 20, 219–239 (2013)

    Google Scholar 

  15. Moser, D.: Rapporto sull’importanza dell’energia solare su scala regionale e sul potenziale di sviluppo dell’energia solare a livello locale. Technical report (2015). https://doi.org/10.13140/RG2.1.4794.9284

Download references

Acknowledgements

We thank the Regional Agency for Environmental Protection (ARPAC) operating in Campania (South Italy) in the person of Eng. Paolo D’Auria, for providing solar radiation and PM2.5 measurements by the regional air quality monitoring network.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Fattoruso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fattoruso, G., Nocerino, M., Sorrentino, G., Manna, V., Fabbricino, M., Di Francia, G. (2020). Estimating Air Pollution Related Solar Insolation Reduction in the Assessment of the Commercial and Industrial Rooftop Solar PV Potential. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12250. Springer, Cham. https://doi.org/10.1007/978-3-030-58802-1_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58802-1_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58801-4

  • Online ISBN: 978-3-030-58802-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics