Skip to main content

Artificial Trachea: Past, Present, and Future

  • Chapter
  • First Online:
Kenzan Method for Scaffold-Free Biofabrication

Abstract

The trachea and bronchus play important roles in the human body, providing a pathway for air to reach the lungs. Various diseases can arise in the airway, including cancer, stenosis, and tracheobronchomalacia. Surgery represents the main form of treatment for these diseases. However, resecting over 50% of the tracheal length is currently unfeasible because of the need for remnant trachea. To overcome this limitation and improve curability rates, alternatives are needed. Many investigators in both research fields and clinical practice have reported on artificial trachea. Autologous tissue, synthetic materials, and allograft have all been used as artificial trachea. However, practical artificial trachea for use in the clinical field remains lacking. Issues with artificial trachea that need to be overcome include infection, rigidity, the need for immunosuppressants, and in vivo growth for pediatric cases. Scaffold-free artificial trachea made using the patient’s own cells could resolve some of these issues. Artificial trachea created using the “Regenova” bio-3D printing system has been successfully transplanted into rats to replace native trachea, achieving survival for more than 1 year without immunosuppressants. Many issues of trachea made by foreign materials have thus been solved in rats. However, many issues remain to be addressed before clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mintz ML (2006) Disorders of the respiratory tract. Common challenges in primary care. Springer, Heidelberg, pp p11–p15

    Book  Google Scholar 

  2. Furlow PW, Mathisen DJ (2018) Surgical anatomy of the trachea. Ann Cardiothorac Surg 7:255–260

    Article  Google Scholar 

  3. Weibel ER (1963) Morphometry of the human lung. Academic, New York

    Book  Google Scholar 

  4. Mercer RR, Russell ML et al (1994) Cell number and distribution in human and rat airways. Am J Respir Cell Mol Biol 10:613–624

    Article  Google Scholar 

  5. Weibel ER (1997) Design and morphometry of the pulmonary gas exchanger. In: Crystal RG, West JB, Weibel ER et al (eds) The lung: scientific foundations, 2nd edn. Lippincott-Raven, Philadelphia, pp 1147–1157

    Google Scholar 

  6. Manninen MP, Antila PJ et al (1991) Occurrence of tracheal carcinoma in Finland. Acta Otolaryngol 111:1162–1169

    Article  Google Scholar 

  7. Licht PB, Friis S et al (2001) Tracheal cancer in Denmark: a nationwide study. Eur J Cardiothorac Surg 19:339–345

    Article  Google Scholar 

  8. Gelder CM, Hetzel MR (1993) Primary tracheal tumours: a national survey. Thorax 48:688–692

    Article  Google Scholar 

  9. Bhattacharyya N (2004) Contemporary staging and prognosis for primary tracheal malignancies: a population-based analysis. Otolaryngol Head Neck Surg 131:639–642

    Article  Google Scholar 

  10. Gilbert JB, Mazzarella LA et al (1949) Primary tracheal tumours in infants and children. J Pediatr 35:63–69

    Article  Google Scholar 

  11. Desai DP, Holinger LD et al (1998) Tracheal neoplasm in children. Ann Otol Rhinol Laryngol 107:790–796

    Article  Google Scholar 

  12. Perelman MI, Koroleva NS (1987) Primary tumors of the trachea. In: Grillo HC, Eschapasse H (eds) Major challenges, international trends in general thoracic surgery, vol 2. Saunders, Philadelphia, pp 91–106

    Google Scholar 

  13. Beheshti J, Mark EJ et al (2004) Epithelial tumor of the trachea. In: Grillo HC (ed) Surgery of the trachea and bronchi. BC Decker, London, pp 73–85

    Google Scholar 

  14. Beheshti J, Mark EJ (2004) Mesenchymal tumor of the trachea. In: Grillo HC (ed) Surgery of the trachea and bronchi. BC Decker, London, pp 86–97

    Google Scholar 

  15. Grillo HC (2004) Primary tracheal tumours. In: Grillo HC (ed) Surgery of the trachea and bronchi. BC Decker, London, pp p208–p247

    Google Scholar 

  16. Ernst A, Carden K et al (2015) Tracheomalacia and tracheobronchomalacia in adults. In: Basow DS UpToDate Waltham

    Google Scholar 

  17. Carden KA, Boiselle PM et al (2005) Tracheomalacia and tracheobronchomalacia in children and adults: an in-depth review. Chest 127:984–1005

    Article  Google Scholar 

  18. Ridge CA, O’Donnell CR et al (2011) Tracheobronchomalacia: current concepts and controversies. J Thorac Imaging 26:278–289

    Article  Google Scholar 

  19. Buitrago DH, Wilson JL et al (2017) Current concepts in severe adult tracheobronchomalacia: evaluation and treatment. J Thorac Dis 9:E57–E66

    Article  Google Scholar 

  20. Mathisen DJ (1996) Tracheal tumours. Chest Surg Clin N Am 6:875–898

    Google Scholar 

  21. Mathisen DJ, Grillo HC (1989) Endoscopic relief of malignant airway obstruction. Ann Thorac Surg 48:469–475

    Article  Google Scholar 

  22. Grillo HC, Mathisen DJ (1990) Primary tracheal tumours: treatment and results. Ann Thorac Surg 49:69–77

    Article  Google Scholar 

  23. Pearson FG, Todd TRJ et al (1984) Experience with primary neoplasms of the trachea and carina. J Thorac Cardiovasc Surg 88:511–518

    Article  Google Scholar 

  24. Pearson F, Brito-Filomeno L et al (1986) Experience with partial cricoid resection and thyrotracheal anastomosis. Ann Otol Rhinol Laryngol 95:582–585

    Article  Google Scholar 

  25. Grillo HC (2003) Development of tracheal surgery: a historical review. Part 1: techniques of tracheal surgery. Ann Thorac Surg 75:610–619

    Article  Google Scholar 

  26. Dedo H, Fishman N (1969) Suprahyoid release for tracheal stenosis. Ann Otol Rhinol Laryngol 78:285–291

    Article  Google Scholar 

  27. Montgomery WW (1974) Suprahyoid release for tracheal stenosis. Arch Otolaryngol 99:255–259

    Article  Google Scholar 

  28. Grillo HC (2003) Development of tracheal surgery: a historical review. Part 2: treatment of tracheal diseases. Ann Thorac Surg 75:1039–1047

    Article  Google Scholar 

  29. Belsey R (1950) Resection and reconstruction of the intrathoracic trachea. Br J Surg 38:200–205

    Article  Google Scholar 

  30. Rose KG, Sesterhenn K et al (1979) Tracheal allotransplantation in man. Lancet 1:433

    Article  Google Scholar 

  31. Etienne H, Fabre D et al (2018) Tracheal replacement. Eur Respir J 51:1–9

    Article  Google Scholar 

  32. Elliott MJ, De Coppi P et al (2012) Stem-cell-based, tissue engineered tracheal replacement in a child: a 2-year follow-up study. Lancet 380:994–1000

    Article  Google Scholar 

  33. Jackson TL, O’Brien EJ et al (1950) The experimental use of homogenous tracheal transplants in the restoration of continuity of the tracheobronchial tree. J Thorac Surg 20:598–612

    Article  Google Scholar 

  34. Scherer MA, Ascherl R et al (1986) Experimental biosynthetic reconstruction of the trachea. Arch Otorhinolarynol 243:215–223

    Article  Google Scholar 

  35. Grillo HC (2002) Tracheal replacement: a critical review. Ann Thorac Surg 73:1995–2004

    Article  Google Scholar 

  36. Spaggiari L, Calabrese LS et al (2005) Successful subtotal tracheal replacement (using a skin/omental graft) for dehiscence after a resection for thyroid cancer. J Thorac Cardiovasc Surg 129:1455–1456

    Article  Google Scholar 

  37. Delaere PR, Vranckx JJ et al (2012) Learning curve in tracheal allotransplantation. Am J Transplant 12:2538–2545

    Article  Google Scholar 

  38. Shinohara H, Yuzuriha S et al (2004) Tracheal reconstruction with a prefabricated deltopectoral flap combined with costal cartilage graft and palatal mucosal graft. Ann Plast Surg 53:278–281

    Article  Google Scholar 

  39. Maciejewski A, Szymczyk C et al (2009) Tracheal reconstruction with the use of radial forearm free flap combined with biodegradative mesh suspension. Ann Thorac Surg 87:608–610

    Article  Google Scholar 

  40. Yu P, Clayman GL et al (2006) Human tracheal reconstruction with a composite radial forearm free flap and prosthesis. Ann Thorac Surg 81:714–716

    Article  Google Scholar 

  41. Fabre D, Fadel E et al (2015) Autologous tracheal replacement for cancer. Chin Clin Oncol China 4:46

    Google Scholar 

  42. Fabre D, Singhal S et al (2009) Composite cervical skin and cartilage flap provides a novel large airway substitute after long-segment tracheal resection. J Thorac Cardiovasc Surg 138:32–39

    Article  Google Scholar 

  43. Fabre D, Kolb F et al (2013) Successful tracheal replacement in humans using autologous tissues: an 8-year experience. Ann Thorac Surg 96:1146–1155

    Article  Google Scholar 

  44. Doss AE, Dunn SS et al (2007) Tracheal replacements: part 2. ASAIO J 53:631–639

    Article  Google Scholar 

  45. Toomes H, Mickisch G et al (1985) Experiences with prosthetic reconstruction of the trachea and bifurcation. Thorax 40:32–37

    Article  Google Scholar 

  46. Deslauriers J, Ginsberg RJ et al (1975) Innominate artery rupture. A major complication of tracheal surgery. Ann Thorac Surg 20:671–677

    Article  Google Scholar 

  47. Gaissert HA, Grillo HC et al (2003) Complication of benign tracheobronchial strictures by self-expanding metal stents. J Thorac Cardiovasc Surg 126:744–747

    Article  Google Scholar 

  48. Cull DL, Lally KP et al (1990) Tracheal reconstruction with polytetrafluoroethylene graft in dogs. Ann Thorac Surg 50:899–901

    Article  Google Scholar 

  49. Grillo HC (1970) Surgery of the trachea. Curr Probl Surg:3–59

    Google Scholar 

  50. Guijarro Jorge R, Sanchez-Palencia Ramos A et al (1990) Experimental study of a new porous tracheal prosthesis. Ann Thorac Surg 50:281–287

    Article  Google Scholar 

  51. Jacobs JR (1988) Investigations into tracheal prosthetic reconstruction. Laryngoscope 98:1239–1245

    Article  Google Scholar 

  52. Neville WE, Bolanowski PJ et al (1990) Clinical experience with the silicone tracheal prothesis. J Thorac Cardiovasc Surg 99:604–613

    Article  Google Scholar 

  53. Pearson FG, Henderson RD et al (1968) The reconstruction of circumferential tracheal defect with a porous prosthesis. J Thorac Cardiovasc Surg 55:605–616

    Article  Google Scholar 

  54. Neville WE, Bolanowski PJ et al (1976) Prosthetic reconstruction of the trachea and carina. J Thorac Cardiovasc Surg 72:525–538

    Article  Google Scholar 

  55. Behrend M, Kluge E et al (2006) On the use of unsealed polypropylene mesh as tracheal replacement. ASAIO J 52:328–333

    Article  Google Scholar 

  56. Maziak DE, Todd TR et al (1996) Adenoid cystic carcinoma of the airway: thirty-two-year experience. J Thorac Cardiovasc Surg 112:1522–1531

    Article  Google Scholar 

  57. Debry C, Dupret-Bories A et al (2014) Laryngeal replacement with an artificial larynx after total laryngectomy: the possibility of restoring larynx functionality in the future. Head Neck 36:1669–1673

    Article  Google Scholar 

  58. Debry C, Vrana NE et al (2017) Implantation of an artificial larynx after total laryngectomy. N Engl J Med 376:97–98

    Article  Google Scholar 

  59. Liu Y, Lu T et al (2016) Collagen-conjugated tracheal prosthesis tested in dogs without omental wrapping and silicone stenting. Interact Cardiovasc Thorac Surg 23:710–715

    Article  Google Scholar 

  60. Seguin A, Radu D et al (2009) Tracheal replacement with cryopreserved, decellularized, or glutaraldehyde-treated aortic allografts. Ann Thorac Surg 87:861–867

    Article  Google Scholar 

  61. Tsukada H, Ernst A et al (2010) Tracheal replacement with a silicone-stented, fresh aortic allograft in sheep. Ann Thorac Surg 89:253–258

    Article  Google Scholar 

  62. Wurtz A, Porte H et al (2010) Surgical technique and results of tracheal and carinal replacement with aortic allografts for salivary gland-type carcinoma. J Thorac Cardiovasc Surg 140:387–393

    Article  Google Scholar 

  63. Levashov Yu N, Yablonsky PK et al (1993) One-stage allotransplantation of thoracic segment of the trachea in a patient with idiopathic fibrosing mediastinitis and marked tracheal stenosis. Eur J Cardiothorac Surg 7:383–386

    Article  Google Scholar 

  64. Klepetko W, Marta GM et al (2004) Heterotopic tracheal transplantation with omentum wrapping in the abdominal position preserves functional and structural integrity of a human tracheal allograft. J Thorac Cardiovasc Surg 127:862–867

    Article  Google Scholar 

  65. Delaere P, Vranckx J et al (2010) Tracheal allotransplantation after withdrawal of immunosuppressive therapy. N Engl J Med 362:138–145

    Article  Google Scholar 

  66. Jacobs JP, Elliott MJ et al (1996) Pediatric tracheal homograft reconstruction: a novel approach to complex tracheal stenoses in children. J Thorac Cardiovasc Surg 112:1549–1558

    Article  Google Scholar 

  67. Jacobs JP, Quintessenza JA et al (1999) Tracheal allograft reconstruction: the total North American and worldwide pediatric experiences. Ann Thorac Surg 68:1043–1051

    Article  Google Scholar 

  68. Propst EJ, Prager JD et al (2011) Pediatric tracheal reconstruction using cadaveric homograft. Arch Otolaryngol Head Neck Surg 137:583–590

    Article  Google Scholar 

  69. Jungebluth P, Alici E et al (2011) Tracheobronchial transplantation with a stem-cell-seeded bioartificial nanocomposite: a proof-of-concept study. Lancet 378:1997–2004

    Article  Google Scholar 

  70. Claesson-Welsh L, Hansson GK, Royal Swedish Academy of Sciences (2016) Tracheobronchial transplantation: the Royal Swedish Academy of Sciences’ concerns. Lancet 387:942

    Article  Google Scholar 

  71. Cyranoski D (2014) Investigations launched into artificial tracheas. Nature 516:16–17

    Article  Google Scholar 

  72. Jungebluth P, Moll G et al (2012) Tissue-engineered airway: a regenerative solution. Clin Pharmacol Ther 91:81–93

    Article  Google Scholar 

  73. Benders KE, van Weeren PR et al (2013) Extracellular matrix scaffolds for cartilage and bone regeneration. Trends Biotechnol 31:169–176

    Article  Google Scholar 

  74. Schwarz S, Elsaesser AF et al (2015) Processed xenogenic cartilage as innovative biomatrix for cartilage tissue engineering: effects on chondrocyte differentiation and function. J Tissue Eng Regen Med 9:E239–E251

    Article  Google Scholar 

  75. Delaere P, Van Raemdonck D (2016) Tracheal replacement. J Thorac Dis 8:S186–S196

    Google Scholar 

  76. Komura M, Komura H et al (2019) Fabrication of an anatomy-mimicking BIO-AIR-TUBE with engineered cartilage. Regen Ther 11:176–181

    Article  Google Scholar 

  77. Jungebluth P, Haag JC et al (2014) Tracheal tissue engineering in rats. Nat Protoc 9:2164–2179

    Article  Google Scholar 

  78. Kelm JM, Lorber V et al (2010) A novel concept for scaffold-free vessel tissue engineering: self-assembly of microtissue building blocks. J Biotechnol 148:46–55

    Article  Google Scholar 

  79. Hysi I, Kipnis E et al (2015) Successful orthotopic transplantation of short tracheal segments without immunosuppressive therapy. Eur J Cardiothorac Surg 47:e54–e61

    Article  Google Scholar 

  80. Hong H, Seo YB et al (2019) Digital light processing 3D printed silk fibroin hydrogel for cartilage tissue engineering. Biomaterials 232:119679

    Article  Google Scholar 

  81. Park JH, Yoon JK et al (2019) Digital light processing 3D printed silk fibroin hydrogel for cartilage tissue engineering. Experimental tracheal replacement using 3-dimensional bioprinted artificial trachea with autologous epithelial cells and chondrocytes. Sci Rep 9:2103

    Article  Google Scholar 

  82. Taniguchi D, Matsumoto K et al (2018) Scaffold-free trachea regeneration by tissue engineering with bio-3D printing. Interact Cardiovasc Thorac Surg 26:745–752

    Article  Google Scholar 

  83. Machino R, Matsumoto K et al (2019) Replacement of rat tracheas by layered, trachea-like, scaffold-free structures of human cells using a bio-3D printing system. Adv Healthc Mater 8:e1800983

    Article  Google Scholar 

  84. Dell’Accio F, De Bari C et al (2001) Molecular markers predictive of the capacity of expanded human articular chondrocytes to form stable cartilage in vivo. Arthritis Rheum 44:1608–1619

    Article  Google Scholar 

  85. Dickhut A, Pelttari K et al (2009) Calcification or dedifferentiation: requirement to lock mesenchymal stem cells in a desired differentiation stage. J Cell Physiol 219:219–226

    Article  Google Scholar 

  86. Taniguchi D, Matsumoto K et al (2020) Human lung microvascular endothelial cells as potential alternatives to human umbilical vein endothelial cells in bio-3D-printed trachea-like structures. Tissue Cell 63:101321

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keitaro Matsumoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Matsumoto, K., Nagayasu, T. (2021). Artificial Trachea: Past, Present, and Future. In: Nakayama, K. (eds) Kenzan Method for Scaffold-Free Biofabrication. Springer, Cham. https://doi.org/10.1007/978-3-030-58688-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58688-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58687-4

  • Online ISBN: 978-3-030-58688-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics