Skip to main content

Low Energy/Low Carbon Eco-Cementitious Binders as an Alternative to Ordinary Portland Cement

  • Living reference work entry
  • First Online:
Handbook of Smart Materials, Technologies, and Devices

Abstract

Cement production is an exothermic process and contributes approximately 8% of world’s total anthropogenic CO2 emission. The growing demand for cement and increasing concerns over environmental sustainability has prompted the cement community to search for alternative, eco-cementitious binders. In the last few decades, several eco-cementitious binders have been proposed with lower embodied energy and reduced carbon footprint than that of ordinary Portland cement (OPC). This chapter focuses about six promising alternative cement binders which have the potential to be adopted in varieties of building and infrastructure projects. The chapter briefs about the involved cement chemistry, characteristics, raw material used, their availability, and current application of (a) calcium sulfoaluminate, (b) alkali activated, (c) magnesium oxide, and (d) limestone calcined clay cement. Besides that, chapter also presents the critical appraisal on CO2 reduction potential of the studied alternative cements, current challenges, and future direction of research. The scientific value of this chapter was to serve the substantial base of knowledge to the students, researchers, and practicing professionals for the development and conventional application of eco-cementitious binders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Andrew RM (2018) Global CO2 emissions from cement production. Earth Syst Sci Data 10:195–217

    Article  Google Scholar 

  • Antoni M (2013) Investigation of cement substitution by blends of calcined clays and limestone. Swiss Federal Institute of Technology in Lausanne

    Google Scholar 

  • Antoni M, Rossen J, Martirena F, Scrivener K (2012) Cement substitution by a combination of metakaolin and limestone. Cem Concr Res 42:1579–1589

    Article  Google Scholar 

  • Arjunan P, Silsbee MR, Roy DM (1999) Sulfoaluminate-belite cement from low-calcium fly ash and sulfur-rich and other industrial by-products. Cem Concr Res 29(8):1305–1311

    Article  Google Scholar 

  • Aspdin J (1824) An improvement in the modes of producing artificial stone. Brevet Britannique BP 5022:1824

    Google Scholar 

  • Avet F, Scrivener K (2018a) Investigation of the calcined kaolinite content on the hydration of limestone calcined clay cement (LC3). Cem Concr Res 107:124–135

    Article  Google Scholar 

  • Avet F, Scrivener K (2018b) Hydration study of limestone calcined clay cement (LC 3) using various grades of calcined kaolinitic clays. In: Calcined clays for sustainable concrete. Springer, Dordrecht, pp 35–40

    Chapter  Google Scholar 

  • Avet F, Scrivener K (2020) Influence of pH on the chloride binding capacity of limestone calcined clay cements (LC3). Cem Concr Res 131:106031

    Article  Google Scholar 

  • Avet F, Snellings R, Diaz AA, Haha MB, Scrivener K (2016) Development of a new rapid, relevant and reliable (R3) test method to evaluate the pozzolanic reactivity of calcined kaolinitic clays. Cem Concr Res 85:1–11

    Article  Google Scholar 

  • Bakharev T, Sanjayan JG, Cheng YB (2002) Sulfate attack on alkali-activated slag concrete. Cem Concr Res 32(2):211–216

    Article  Google Scholar 

  • Bernardo G, Telesca A, Valenti GL (2006) A porosimetric study of calcium sulfoaluminate cement pastes cured at early ages. Cem Concr Res 36(6):1042–1047

    Article  Google Scholar 

  • Bishnoi S, Maity S (2018) Limestone calcined clay cement: the experience in India this far. In: Calcined clays for sustainable concrete. Springer, Dordrecht, pp 64–68

    Chapter  Google Scholar 

  • Bishnoi S, Maity S, Mallik A, Joseph S, Krishnan S (2014) Pilot scale manufacture of limestone calcined clay cement: the Indian experience. Indian Concr J 88(6):22–28

    Google Scholar 

  • Burris LE, Kurtis KE (2018) Influence of set retarding admixtures on calcium sulfoaluminate cement hydration and property development. Cem Concr Res 104:105–113

    Article  Google Scholar 

  • Champenois JB, Dhoury M, Coumes CCD, Mercier C, Revel B, Le Bescop P, Damidot D (2015) Influence of sodium borate on the early age hydration of calcium sulfoaluminate cement. Cem Concr Res 70:83–93

    Article  Google Scholar 

  • Ding YC, Fang YS, Cheng TW (2016) Preparation and characterization of vitrified slag/geopolymers for construction and fire-resistance applications. Mater Struct 49(5):1883–1891

    Article  Google Scholar 

  • Duxson PSWM, Mallicoat SW, Lukey GC, Kriven WM, van Deventer JS (2007) The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers. Colloids Surf A Physicochem Eng Asp 292(1):8–20

    Article  Google Scholar 

  • Emmanuel AC, Haldar P, Maity S, Bishnoi S (2016) Second pilot production of limestone calcined clay cement in India: the experience. Indian Concr J 90:57–64

    Google Scholar 

  • Fernández-JimĂ©nez A, Palomo A, Criado M (2005) Microstructure development of alkali-activated fly ash cement: a descriptive model. Cem Concr Res 35(6):1204–1209

    Article  Google Scholar 

  • Fernández-JimĂ©nez A, Palomo A, Vazquez T, Vallepu R, Terai T, Ikeda K (2007) Alkaline activation of blends of metakaolin and calcium aluminate part I. strength and microstructural development. J Am Ceram Soc 91(4):1231–1236

    Article  Google Scholar 

  • Garcia-Lodeiro I, Palomo A, Fernández-JimĂ©nez A (2015) An overview of the chemistry of alkali-activated cement-based binders. In: Handbook of alkali-activated cements, mortars and concretes. Woodhead Publishing, pp 19–47

    Chapter  Google Scholar 

  • GarcĂ­a-MatĂ© M, De la Torre AG, LeĂłn-Reina L, Aranda MA, Santacruz I (2013) Hydration studies of calcium sulfoaluminate cements blended with fly ash. Cem Concr Res 54:12–20

    Article  Google Scholar 

  • Gastaldi D, Paul G, Marchese L, Irico S, Boccaleri E, Mutke S, … Canonico F (2016) Hydration products in sulfoaluminate cements: evaluation of amorphous phases by XRD/solid-state NMR. Cem Concr Res 90:162–173

    Google Scholar 

  • Glasser FP, Zhang L (2001) High-performance cement matrices based on calcium sulfoaluminate–belite compositions. Cem Concr Res 31(12):1881–1886

    Article  Google Scholar 

  • Glukhovsky VD (1967) Soil silicate articles and structures. Budivelnyk Publisher, Kiev. 156 pp. (in Ukrainian)

    Google Scholar 

  • Glukhovsky V (1994) Ancient, modern and future concretes. In: First international conference on Alkaline cements and concretes, vol 1, Kiev, pp 1–8

    Google Scholar 

  • Huang G, Pudasainee D, Gupta R, Liu WV (2020) The performance of calcium sulfoaluminate cement for preventing early-age frost damage. Constr Build Mater 254:119322

    Article  Google Scholar 

  • Kasselouri V, Tsakiridis P, Malami C, Georgali B, Alexandridou C (1995) A study on the hydration products of a non-expansive sulfoaluminate cement. Cem Concr Res 25(8):1726–1736

    Article  Google Scholar 

  • A. Klein, Calciumaluminosulfate and expansive cements containing same, 1963

    Google Scholar 

  • Krivenko PV, Kovalchuk GY (2002) Heat-resistant fly ash based geocements. In: Proceedings of international conference on geopolymers

    Google Scholar 

  • Kumarappa DB, Peethamparan S, Ngami M (2018) Autogenous shrinkage of alkali activated slag mortars: basic mechanisms and mitigation methods. Cem Concr Res 109:1–9

    Article  Google Scholar 

  • Lancellotti I, Barbieri L, Leonelli C (2015) Use of alkali-activated concrete binders for toxic waste immobilization. In: Handbook of alkali-activated cements, mortars and concretes. Woodhead Publishing, pp 539–554

    Chapter  Google Scholar 

  • Lawrence CD (1998) The production of low-energy cements. In: Lea’s Chemistry of Cement and Concrete, London, pp 421–470

    Google Scholar 

  • Lura P, Winnefeld F, Klemm S (2010) Simultaneous measurements of heat of hydration and chemical shrinkage on hardening cement pastes. J Therm Anal Calorim 101(3):925–932

    Article  Google Scholar 

  • Luukkonen T, Heponiemi A, Runtti H, Pesonen J, Yliniemi J, Lassi U (2019) Application of alkali-activated materials for water and wastewater treatment: a review. Rev Environ Sci Biotechnol 18(2):271–297

    Article  Google Scholar 

  • Maravelaki-Kalaitzaki P, Moraitou G (1999) Sorel’s cement mortars. Cem Concr Res 29(12):1929–1935

    Article  Google Scholar 

  • Maravelaki-kalaitzaki P, Moraitou G (2000) Sorel’s cement mortars decay susceptibility and effect on Pentelic marble. Cem Concr Res 29:1929–1935

    Article  Google Scholar 

  • Mishra G, Emmanuel AC, Bishnoi S (2019) Influence of temperature on hydration and microstructure properties of limestone-calcined clay blended cement. Mater Struct 52(5)

    Google Scholar 

  • Nguyen QD, Kim T, Castel A (2020) Mitigation of alkali-silica reaction by limestone calcined clay cement (LC3). Cem Concr Res 137:106176

    Article  Google Scholar 

  • Padilla-Encinas P, Palomo A, Blanco-Varela MT, Fernández-JimĂ©nez A (2020) Calcium sulfoaluminate clinker hydration at different alkali concentrations. Cem Concr Res 138:106251

    Article  Google Scholar 

  • Pan Z, Cheng L, Lu Y, Yang N (2002) Hydration products of alkali-activated slag–red mud cementitious material. Cem Concr Res 32(3):357–362

    Article  Google Scholar 

  • PĂ©ra J, Ambroise J (2004) New applications of calcium sulfoaluminate cement. Cem Concr Res 34(4):671–676

    Article  Google Scholar 

  • Pillai RG, Gettu R, Santhanam M, Rengaraju S, Dhandapani Y, Rathnarajan S, Basavaraj AS (2019) Service life and life cycle assessment of reinforced concrete systems with limestone calcined clay cement (LC3). Cem Concr Res 118:111–119

    Article  Google Scholar 

  • San Nicolas R, Cyr M, Escadeillas G (2013) Characteristics and applications of flash metakaolins. Appl Clay Sci 83:253–262

    Article  Google Scholar 

  • Shi C, Fernández-JimĂ©nez A, Palomo A (2011) New cements for the 21st century: the pursuit of an alternative to Portland cement. Cem Concr Res 41:750–763

    Article  Google Scholar 

  • Sorel S, Hebd CR (1867) Sorel cement. C R Hebd Seances Acad Sci 65:102

    Google Scholar 

  • VizcaĂ­no-AndrĂ©s LM, Sánchez-Berriel S, Damas-Carrera S, PĂ©rez-Hernández A, Scrivener KL, Martirena-Hernández JF (2015) Industrial trial to produce a low clinker, low carbon cement. Mater Constr 65(317):045

    Google Scholar 

  • Winnefeld F, Barlag S (2010) Calorimetric and thermogravimetric study on the influence of calcium sulfate on the hydration of ye’elimite. J Therm Anal Calorim 101(3):949–957

    Article  Google Scholar 

  • Yang KH, Song JK, Song KI (2013) Assessment of CO2 reduction of alkali-activated concrete. J Clean Prod 39:265–272

    Article  Google Scholar 

  • Zhang L, Glasser FP (2002) Hydration of calcium sulfoaluminate cement at less than 24 h. Adv Cem Res 14(4):141–155

    Article  Google Scholar 

  • Zhang J, Luosun Y, Wang J, Han Y (2015) Shrinkage of high-strength calcium sulfoaluminate cement concrete with impact of pre-soaked lightweight aggregate internal curing. Mag Concr Res 67(22):1204–1213

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to The Ministry of Environment, Forest and Climate Change, New Delhi, Government of India for the sustained financial support to the project entitled, “Development of low energy- low carbon ECO cementitious binders via synergistic use of low graded industrial wastes for sustainable development” (File Number: 19-45/2018/RE; Project No.: GAP0090).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive licence to Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Srivastava, A., Kumar, R., Lakhani, R. (2021). Low Energy/Low Carbon Eco-Cementitious Binders as an Alternative to Ordinary Portland Cement. In: Hussain, C.M., Di Sia, P. (eds) Handbook of Smart Materials, Technologies, and Devices. Springer, Cham. https://doi.org/10.1007/978-3-030-58675-1_143-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58675-1_143-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58675-1

  • Online ISBN: 978-3-030-58675-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics