Skip to main content

A Context-Based Video Compression: A Quantum-Inspired Vector Quantization Approach

  • Conference paper
  • First Online:
Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2020 (AISI 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1261))

Abstract

This paper proposes a modified video compression model that optimizes vector quantization codebook by using the adapted Quantum Genetic Algorithm (QGA) that uses the quantum features, superposition, and entanglement to build optimal codebook for vector quantization. A context-based initial codebook is created by using a background subtraction algorithm; then, the QGA is adapted to get the optimal codebook. This optimal feature vector is then utilized as an activation function inside the neural network’s hidden layer to remove redundancy. Furthermore, approximation wavelet coefficients were lossless compressed with Differential Pulse Code Modulation (DPCM); whereas details coefficients are lossy compressed using Learning Vector Quantization (LVQ) neural networks. Finally, Run Length Encoding is engaged to encode the quantized coefficients to achieve a high compression ratio. As individuals in the QGA are actually the superposition of multiple individuals, it is less likely that good individuals will be lost. Experiments have proven the system’s ability to achieve a higher compression ratio with acceptable efficiency measured by PSNR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Elmolla, A., Salama, G., Elbayoumy, D.: A novel video compression scheme based on fast curvelet transform. Int. J. Comput. Sci. Telecommun. 6(3), 7–10 (2015)

    Google Scholar 

  2. Shraddha, P., Piyush, S., Akhilesh, T., Prashant, K., Manish, M., Rachana, D.: Review of video compression techniques based on fractal transform function and swarm intelligence. Int. J. Mod. Phys. B 34(8), 1–10 (2020)

    MathSciNet  MATH  Google Scholar 

  3. Ponlatha, S., Sabeenian, R.: Comparison of video compression standards. Int. J. Comput. Electr. Eng. 5(6), 549–554 (2013)

    Article  Google Scholar 

  4. Knop, M., Cierniak, R., Shah, N.: Video compression algorithm based on neural network structures. In: Proceedings of the International Conference on Artificial Intelligence and Soft Computing, Poland, pp. 715–724 (2014)

    Google Scholar 

  5. Haiju, F., Kanglei, Z., En, Z., Wenying, W., Ming, L.: Subdata image encryption scheme based on compressive sensing and vector quantization. Neural Comput. Appl. 33(8), 1–17 (2020)

    Google Scholar 

  6. Zhang, J., Li, H., Tang, Z., Liu, C.: Quantum genetic algorithm for adaptive image multi-thresholding segmentation. Int. J. Comput. Appl. Technol. 51(3), 203–211 (2015)

    Article  Google Scholar 

  7. Mousavi, S., Afghah, F., Ashdown, J.D., Turck, K.: Use of a quantum genetic algorithm for coalition formation in large-scale UAV networks. Ad Hoc Netw. 87(1), 26–36 (2019)

    Article  Google Scholar 

  8. Tian, Y., Hu, W., Du, B., Hu, S., Nie, C., Zhang, C.: IQGA: a route selection method based on quantum genetic algorithm-toward urban traffic management under big data environment. World Wide Web 22(5), 2129–2151 (2019)

    Article  Google Scholar 

  9. Atheeshwar, M., Mahesh, K.: Efficient and robust video compression using Huffman coding. Int. J. Adv. Res. Eng. Technol. 2(8), 5–8 (2014)

    Google Scholar 

  10. Suri, A., Goraya, A.: Hybrid approach for video compression using ant colony optimization and modified fast Haar wavelet transform. Int. J. Comput. Appl. 97(17), 26–30 (2014)

    Google Scholar 

  11. Rubina, I.: Novel method for fast 3d DCT for video compression. In: International Conference on Creativity in Intelligent Technologies and Data Science, Russia, pp. 674–685 (2015)‏

    Google Scholar 

  12. Esakkirajan, S., Veerakumar, T., Navaneethan, P.: Adaptive vector quantization based video compression scheme. In: IEEE International Conference on Signal Processing and Communication Technologies, India, pp. 40–43 (2009)‏

    Google Scholar 

  13. Nithin, S., Suresh, L.P.: Video coding on fast curvelet transform and burrows wheeler transform. In: IEEE International Conference on Circuit, Power and Computing Technologies, India, pp. 1–5 (2016)

    Google Scholar 

  14. Boufares, O., Aloui, N., Cherif, A.: Adaptive threshold for background subtraction in moving object detection using stationary wavelet transforms 2D. Int. J. Adv. Comput. Sci. Appl. 7(8), 29–36 (2016)

    Google Scholar 

  15. Wang, W., Yang, S., Tung, C.: Codebook design for vector quantization using genetic algorithm. Int. J. Electron. Bus. 3(2), 83–89 (2005)

    Google Scholar 

  16. Singh, A.V., Murthy, K.S.: Neuro-curvelet model for efficient image compression using vector quantization. In: International Conference on VLSI Communication Advanced Devices Signals and Systems and Networking, India, pp. 179–185 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan A. Khalil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hassan, O.F., Darwish, S.M., Khalil, H.A. (2021). A Context-Based Video Compression: A Quantum-Inspired Vector Quantization Approach. In: Hassanien, A.E., Slowik, A., Snášel, V., El-Deeb, H., Tolba, F.M. (eds) Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2020. AISI 2020. Advances in Intelligent Systems and Computing, vol 1261. Springer, Cham. https://doi.org/10.1007/978-3-030-58669-0_1

Download citation

Publish with us

Policies and ethics