Skip to main content

Network Distances for Weighted Digraphs

  • Conference paper
  • First Online:
Mathematical Optimization Theory and Operations Research (MOTOR 2020)

Abstract

The interpretation of the biological mechanisms through the systems biology approach involves the representation of the molecular components in an integrated system, namely a network, where the interactions among them are much more informative than the single components. The definition of the dissimilarity between complex biological networks is fundamental to understand differences between conditions, states, and treatments. It is, therefore, challenging to identify the most suitable distance measures for this kind of analysis. In this work, we aim at testing several measures to define the distance among sample- and condition-specific metabolic networks. The networks are represented as directed, weighted graphs, due to the nature of the metabolic reactions. We used four different case studies and exploited Support Vector Machine classification to define the performance of each measure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bartlett, J., et al.: Comparing breast cancer multiparameter tests in the OPTIMA prelim trial: no test is more equal than the others. JNCI J. Natl. Cancer Inst. 108(9), djw050 (2016)

    Article  Google Scholar 

  2. Carpi, L., et al.: Assessing diversity in multiplex networks. Sci. Rep. 9(1), 1–12 (2019)

    Google Scholar 

  3. Cha, S.H.: Comprehensive survey on distance/similarity measures between probability density functions. Int. J. Math. Models Methods Appl. Sci. 1(4), 300–307 (2007)

    MathSciNet  Google Scholar 

  4. Chang, W., Luraschi, J., Mastny, T.: profvis: Interactive Visualizations for Profiling R Code (2019). https://CRAN.R-project.org/package=profvis. r package version 0.3.6

  5. Clemente, G.P., Grassi, R.: DirectedClustering: Directed Weighted Clustering Coefficient (2018). https://CRAN.R-project.org/package=DirectedClustering. r package version 0.1.1

  6. Clemente, G., Grassi, R.: Directed clustering in weighted networks: a new perspective. Chaos Solitons Fractals 107, 26–38 (2018)

    Article  MathSciNet  Google Scholar 

  7. Cormen, T.H., Stein, C., Rivest, R.L., Leiserson, C.E.: Introduction to Algorithms, 2nd edn. McGraw-Hill Higher Education, New York (2001)

    MATH  Google Scholar 

  8. Csardi, G., Nepusz, T.: The igraph software package for complex network research. InterJournal Complex Syst. 1695 (2006). http://igraph.org

  9. Dehmer, M., Mowshowitz, A.: A history of graph entropy measures. Inf. Sci. 181(1), 57–78 (2011)

    Article  MathSciNet  Google Scholar 

  10. Deza, E., Deza, M.M. (eds.): Dictionary of Distances. Elsevier, Amsterdam (2006)

    Google Scholar 

  11. Donnat, C., Holmes, S.: Tracking network dynamics: a survey using graph distances. Ann. Appl. Stat. 12(2), 971–1012 (2018)

    Article  MathSciNet  Google Scholar 

  12. Emmert-Streib, F., Dehmer, M., Shi, Y.: Fifty years of graph matching, network alignment and network comparison. Inf. Sci. 346(C), 180–197 (2016)

    Article  MathSciNet  Google Scholar 

  13. Endres, D.M., Schindelin, J.E.: A new metric for probability distributions. IEEE Trans. Inf. Theory 49(7), 1858–1860 (2003)

    Article  MathSciNet  Google Scholar 

  14. Costa, L.d.F., Rodrigues, F.A., Travieso, G., Boas, P.R.V.: Characterization of complex networks: a survey of measurements. Adv. Phys. 56, 167–242 (2007)

    Google Scholar 

  15. Fagiolo, G.: Clustering in complex directed networks. Phys. Rev. E 76, 026107 (2007)

    Article  Google Scholar 

  16. Granata, I., Guarracino, M., Kalyagin, V., Maddalena, L., Manipur, I., Pardalos, P.: Supervised classification of metabolic networks. In: IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2018, Madrid, Spain, 3–6 December 2018, pp. 2688–2693 (2018)

    Google Scholar 

  17. Granata, I., Guarracino, M.R., Kalyagin, V.A., Maddalena, L., Manipur, I., Pardalos, P.M.: Model simplification for supervised classification of metabolic networks. Ann. Math. Artif. Intell. 88(1), 91–104 (2019). https://doi.org/10.1007/s10472-019-09640-y

    Article  MathSciNet  MATH  Google Scholar 

  18. Granata, I., Guarracino, M.R., Maddalena, L., Manipur, I., Pardalos, P.M.: On network similarities and their applications. In: Mondaini, R.P. (ed.) BIOMAT 2019, pp. 23–41. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46306-9_3

    Chapter  Google Scholar 

  19. Granata, I., Troiano, E., Sangiovanni, M., Guarracino, M.: Integration of transcriptomic data in a genome-scale metabolic model to investigate the link between obesity and breast cancer. BMC Bioinformatics 20(4), 162 (2019)

    Article  Google Scholar 

  20. Guzzi, P., Milenković, T.: Survey of local and global biological network alignment: the need to reconcile the two sides of the same coin. Brief. Bioinform. 19(3), 472–481 (2017)

    Google Scholar 

  21. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explor. 11(1), 10–18 (2009)

    Article  Google Scholar 

  22. Hammond, D.K., Gur, Y., Johnson, C.R.: Graph diffusion distance: a difference measure for weighted graphs based on the graph Laplacian exponential kernel. In: 2013 IEEE Global Conference on Signal and Information Processing, pp. 419–422, December 2013

    Google Scholar 

  23. Dorst, H.G.: Philentropy: information theory and distance quantification with R. J. Open Source Softw. 3(26), 765 (2018). http://joss.theoj.org/papers/10.21105/joss.00765

    Article  Google Scholar 

  24. Jaccard, P.: Étude comparative de la distribution florale dans une portion des alpes et des jura. Bulletin del la Société Vaudoise des Sciences Naturelles 37, 547–579 (1901)

    Google Scholar 

  25. Jurman, G., Visintainer, R., Filosi, M., Riccadonna, S., Furlanello, C.: The HIM glocal metric and kernel for network comparison and classification. In: 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA), pp. 1–10 (2015)

    Google Scholar 

  26. Kalyagin, V.A., Pardalos, P.M., Rassias, T.M. (eds.): Network Models in Economics and Finance. SOIA, vol. 100. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09683-4

    Book  MATH  Google Scholar 

  27. Konstantinos, G., et al.: Network Design and Optimization for Smart Cities, vol. 8. World Scientific, Singapore (2017)

    Google Scholar 

  28. Latora, V., Marchiori, M.: Efficient behavior of small-world networks. Phys. Rev. Lett. 87, 198701 (2001)

    Article  Google Scholar 

  29. Liu, Q., Dong, Z., Wang, E.: Cut based method for comparing complex networks. Sci. Rep. 8(1), 1–11 (2018)

    Google Scholar 

  30. Maiorano, F., Ambrosino, L., Guarracino, M.R.: The MetaboX library: building metabolic networks from KEGG database. In: Ortuño, F., Rojas, I. (eds.) IWBBIO 2015. LNCS, vol. 9043, pp. 565–576. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16483-0_55

    Chapter  Google Scholar 

  31. Mueller, L.A.J., Dehmer, M., Emmert-Streib, F.: Comparing biological networks: a survey on graph classifying techniques. In: Prokop, A., Csukás, B. (eds.) Systems Biology, pp. 43–63. Springer, Dordrecht (2013). https://doi.org/10.1007/978-94-007-6803-1_2

    Chapter  Google Scholar 

  32. Opsahl, T., Panzarasa, P.: Clustering in weighted networks. Soc. Netw. 31(2), 155–163 (2009)

    Article  Google Scholar 

  33. Parker, J.S., et al.: Supervised risk predictor of breast cancer based on intrinsic subtypes. J. Clin. Oncol. 27(8), 1160 (2009)

    Article  Google Scholar 

  34. Pavlopoulos, G.A., et al.: Using graph theory to analyze biological networks. BioData Min. 4(1), 10 (2011)

    Article  Google Scholar 

  35. Platt, J.: Fast training of support vector machines using sequential minimal optimization. In: Schoelkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel Methods - Support Vector Learning. MIT Press, Cambridge (1998)

    Google Scholar 

  36. RStudio Team: RStudio: Integrated Development Environment for R. RStudio Inc, Boston (2019). http://www.rstudio.com/

  37. Ruan, D., Young, A., Montana, G.: Differential analysis of biological networks. BMC Bioinformatics 16, 1–13 (2015)

    Article  Google Scholar 

  38. Saramäki, J., Kivelä, M., Onnela, J.P., Kaski, K., Kertész, J.: Generalizations of the clustering coefficient to weighted complex networks. Phys. Rev. E 75, 027105 (2007)

    Article  Google Scholar 

  39. Schieber, T., Carpi, L., Díaz-Guilera, A., Pardalos, P., Masoller, C., Ravetti, M.: Quantification of network structural dissimilarities. Nat. Commun. 8(1), 1–10 (2017)

    Google Scholar 

  40. Tsuda, K., Saigo, H.: Graph classification. In: Aggarwal, C., Wang, H. (eds.) Managing and Mining Graph Data. Advances in Database Systems, vol. 40, pp. 337–363. Springer, Boston (2010). https://doi.org/10.1007/978-1-4419-6045-0_11

    Chapter  Google Scholar 

  41. You, K.: NetworkDistance: Distance Measures for Networks (2019). https://CRAN.R-project.org/package=NetworkDistance. r package version 0.3.2

  42. Zvaifler, N.J., Burger, J.A., Marinova-Mutafchieva, L., Taylor, P., Maini, R.N.: Mesenchymal cells, stromal derived factor-1 and rheumatoid arthritis [abstract]. Arthritis Rheum. 42, s250 (1999)

    Google Scholar 

Download references

Acknowledgments

The work was carried out also within the activities of the authors as members of the INdAM Research group GNCS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Rosario Guarracino .

Editor information

Editors and Affiliations

Appendix

Appendix

In Tables 9 and 10, we report detailed numerical performance results obtained using the considered network distances over Simplifications 1 and 2 of all datasets, plotted in Figs. 3(a) and (b), respectively. To provide deeper insight into the performance with respect to each class c, besides Accuracy (Acc) as defined in Eq. (9), we further consider Sensitivity (Se) and Specificity (Sp), defined as

$$ Se = \frac{TP_c}{TP_c + FN_c},\; \; \; \; Sp = \frac{TN_c}{TN_c + FP_c}. $$

Here, \(TP_c\) and \(FN_c\) indicate the number of samples belonging to class c that are correctly classified in class c and those that are misclassified, respectively; \(TN_c\) and \(FP_c\) indicate the number of samples that do not belong to class c that are correctly classified as not belonging to it and those that are misclassified as belonging to it, respectively. Having considered binary classification problems, Se for Class 1 coincides with Sp for Class 2; likewise, Sp for Class 1 coincides with Se for Class 2.

Table 9. Average accuracy (Acc), Sensitivity (Se) and Specificity (Sp) for Class 1 of all datasets (Simplification 1). Highest Acc for each dataset in bold.
Table 10. Average accuracy (Acc), Sensitivity (Se) and Specificity (Sp) for Class 1 of all datasets (Simplification 2). Highest Acc for each dataset in bold.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Granata, I., Guarracino, M.R., Maddalena, L., Manipur, I. (2020). Network Distances for Weighted Digraphs. In: Kochetov, Y., Bykadorov, I., Gruzdeva, T. (eds) Mathematical Optimization Theory and Operations Research. MOTOR 2020. Communications in Computer and Information Science, vol 1275. Springer, Cham. https://doi.org/10.1007/978-3-030-58657-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58657-7_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58656-0

  • Online ISBN: 978-3-030-58657-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics