Skip to main content

Minimum Energy Control of Passive Tracers Advection in Point Vortices Flow

  • Conference paper
  • First Online:
CONTROLO 2020 (CONTROLO 2020)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 695))

Included in the following conference series:

Abstract

In this work we are interested in controlling the displacement of particles in interaction with N point vortices, in a two-dimensional fluid and neglecting the viscous diffusion. We want to drive a passive particle from an initial point to a final point, both given a priori, in a given finite time, the control being due to the possibility of impulsion in any direction of the plane. For the energy cost, the candidates as minimizers are given by the normal extremals of the Pontryagin Maximum Principle (PMP). The transcription of the PMP gives us a set of nonlinear equations to solve, the so-called shooting equations. We introduce these shooting equations and present numerical computations in the cases of \(N=1\), 2, 3 and 4 point vortices. In the integrable case \(N=1\), we give complete quadratures of the normal extremals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The standard inner product is written \(a\cdot b\), for a, b in \(\mathbb {R}^2\).

  2. 2.

    www.hampath.org.

References

  1. Babiano, A., Boffetta, G., Provenzale, A., Vulpiani, A.: Chaotic advection in point vortex models and two-dimensional turbulence. Phys. Fluids 6(7), 2465–2474 (1994)

    Article  MathSciNet  Google Scholar 

  2. Bonnard, B., Cots, O., Wembe, B.: A Zermelo navigation problem with a vortex singularity. ESAIM Control Optim. Calc. Var. (2020). https://doi.org/10.1051/cocv/2020058

  3. Bonnard, B., Faubourg, L., Trélat, E.: Mécanique céleste et contrôle des véhicules spatiaux. In: Mathématiques & Applications, vol. 51, p. 276. Springer, Berlin (2006)

    Google Scholar 

  4. Caillau, J.-B., Cots, O., Gergaud, J.: Differential continuation for regular optimal control problems. Optim. Meth. Softw. 27(2), 177–196 (2011)

    Article  MathSciNet  Google Scholar 

  5. Calleja, R.C., Doedel, E.J., García-Azpeitia, C.: Choreographies in the n-vortex problem. Regul. Chaot. Dyn. 23(5), 595–612 (2018)

    Article  MathSciNet  Google Scholar 

  6. Chenciner, A., Gerver, J., Montgomery, R., Simó, C.: Simple choreographic motions of n bodies: a preliminary study. In: Newton, P., Holmes, P., Weinstein, A. (eds.) Geometry, Mechanics, and Dynamics, pp. 287–308. Springer, New York, NY (2002)

    Chapter  Google Scholar 

  7. Chen, Y., Kolokolnikov, T.: Collective behaviour of large number of vortex in the plane. Proc. R. Soc. A. 469(2156), 12 (2013)

    Article  Google Scholar 

  8. Chertovskih, R., Karamzin, D., Khalil, N.T., Lobo Pereira, F.: Regular path-constrained time-optimal control problems in three-dimensional flow fields. Eur. J. Control. https://doi.org/10.1016/j.ejcon.2020.02.003

  9. Cots, O.: Contrôle optimal géométrique: méthodes homotopiques et applications, Ph.d. Thesis. Institut Mathématiques de Bourgogne, Dijon, France (2012)

    Google Scholar 

  10. Liu, J., Hu, H.: Biological inspiration: from carangiform fish to multi-joint robotic fish. J. Bionic Eng. 7(1), 35–48 (2010)

    Article  Google Scholar 

  11. Meyer, K., Hall, G., Offin, D.C.: Introduction to Hamiltonian dynamical systems and the n-body problem. In: Applied Mathematical Sciences, vol. 90, p. 399. Springer, New York (2009)

    Google Scholar 

  12. Newton, P.K.: The n-vortex problem: analytical techniques. In: Applied Mathematical Sciences, vol. 145, p. 420. Springer (2013)

    Google Scholar 

  13. Pereira, F.L., Grilo, T., Gama, S.: Optimal multi-process control of a two vortex driven particle in the plane. IFAC-PapersOnLine 50(1), 2193–2198 (2017)

    Article  Google Scholar 

  14. Poincaré, H.: Œuvres, Gauthier-Villars (1952)

    Google Scholar 

  15. Pontryagin, L.S., Boltyanskiĭ, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The Mathematical Theory of Optimal Processes. Wiley, New York, London (1962). Translated from the Russian by Trirogoff, K.N. Edited by Neustadt, L.W

    Google Scholar 

  16. Protas, B.: Vortex dynamics models in flow control problems. Nonlinearity IOP Sci. 21(9), R203–R250 (2008)

    Article  MathSciNet  Google Scholar 

  17. Vainchtein, D., Mezi, I.: Vortex-based control algorithms. In: Control of Fluid Flow, pp. 189–212. Springer, Berlin (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Wembe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Balsa, C., Cots, O., Gergaud, J., Wembe, B. (2021). Minimum Energy Control of Passive Tracers Advection in Point Vortices Flow. In: Gonçalves, J.A., Braz-César, M., Coelho, J.P. (eds) CONTROLO 2020. CONTROLO 2020. Lecture Notes in Electrical Engineering, vol 695. Springer, Cham. https://doi.org/10.1007/978-3-030-58653-9_22

Download citation

Publish with us

Policies and ethics