Skip to main content

DRG: Dual Relation Graph for Human-Object Interaction Detection

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12357))

Included in the following conference series:

Abstract

We tackle the challenging problem of human-object interaction (HOI) detection. Existing methods either recognize the interaction of each human-object pair in isolation or perform joint inference based on complex appearance-based features. In this paper, we leverage an abstract spatial-semantic representation to describe each human-object pair and aggregate the contextual information of the scene via a dual relation graph (one human-centric and one object-centric). Our proposed dual relation graph effectively captures discriminative cues from the scene to resolve ambiguity from local predictions. Our model is conceptually simple and leads to favorable results compared to the state-of-the-art HOI detection algorithms on two large-scale benchmark datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Other types of abstracted representation such as the pose of the person, the attribute of the person/object can also be incorporated into our formulation. We leave this to future work.

References

  1. Bansal, A., Rambhatla, S.S., Shrivastava, A., Chellappa, R.: Detecting human-object interactions via functional generalization. In: AAAI (2020)

    Google Scholar 

  2. Bilen, H., Vedaldi, A.: Weakly supervised deep detection networks. In: CVPR (2016)

    Google Scholar 

  3. Chao, Y.W., Liu, Y., Liu, X., Zeng, H., Deng, J.: Learning to detect human-object interactions. In: WACV (2017)

    Google Scholar 

  4. Chao, Y.W., Wang, Z., He, Y., Wang, J., Deng, J.: HICO: A benchmark for recognizing human-object interactions in images. In: CVPR (2015)

    Google Scholar 

  5. Dai, B., Zhang, Y., Lin, D.: Detecting visual relationships with deep relational networks. In: CVPR (2017)

    Google Scholar 

  6. Desai, C., Ramanan, D., Fowlkes, C.C.: Discriminative models for multi-class object layout. IJCV 95(1), 1–12 (2011)

    Article  MathSciNet  Google Scholar 

  7. Fang, H.-S., Cao, J., Tai, Y.-W., Lu, C.: Pairwise body-part attention for recognizing human-object interactions. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 52–68. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_4

    Chapter  Google Scholar 

  8. Fouhey, D.F., Zitnick, C.L.: Predicting object dynamics in scenes. In: CVPR (2014)

    Google Scholar 

  9. Gao, C., Zou, Y., Huang, J.B.: iCAN: instance-centric attention network for human-object interaction detection. In: BMVC (2018)

    Google Scholar 

  10. Girdhar, R., Carreira, J., Doersch, C., Zisserman, A.: Video action transformer network. In: CVPR (2019)

    Google Scholar 

  11. Girshick, R., Radosavovic, I., Gkioxari, G., Dollár, P., He, K.: Detectron (2018). https://github.com/facebookresearch/detectron

  12. Gkioxari, G., Girshick, R., Dollár, P., He, K.: Detecting and recognizing human-object interactions. In: CVPR (2018)

    Google Scholar 

  13. Gupta, S., Malik, J.: Visual semantic role labeling. arXiv preprint arXiv:1505.04474 (2015)

  14. Gupta, T., Schwing, A., Hoiem, D.: No-frills human-object interaction detection: factorization, appearance and layout encodings, and training techniques. In: ICCV (2019)

    Google Scholar 

  15. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: ICCV (2017)

    Google Scholar 

  16. Hu, H., Gu, J., Zhang, Z., Dai, J., Wei, Y.: Relation networks for object detection. In: CVPR (2018)

    Google Scholar 

  17. Hu, R., Rohrbach, M., Andreas, J., Darrell, T., Saenko, K.: Modeling relationships in referential expressions with compositional modular networks. In: CVPR (2017)

    Google Scholar 

  18. Johnson, J., Gupta, A., Fei-Fei, L.: Image generation from scene graphs. In: CVPR (2018)

    Google Scholar 

  19. Johnson, J., et al.: Image retrieval using scene graphs. In: CVPR (2015)

    Google Scholar 

  20. Kato, K., Li, Y., Gupta, A.: Compositional learning for human object interaction. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 247–264. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_15

    Chapter  Google Scholar 

  21. Kolesnikov, A., Lampert, C.H., Ferrari, V.: Detecting visual relationships using box attention. In: ICCV (2019)

    Google Scholar 

  22. Li, Y., Ouyang, W., Wang, X., Tang, X.: VIP-CNN: visual phrase guided convolutional neural network. In: CVPR (2017)

    Google Scholar 

  23. Li, Y., Ouyang, W., Zhou, B., Wang, K., Wang, X.: Scene graph generation from objects, phrases and region captions. In: ICCV (2017)

    Google Scholar 

  24. Li, Y.L., et al.: Transferable interactiveness prior for human-object interaction detection. In: CVPR (2019)

    Google Scholar 

  25. Liao, Y., Liu, S., Wang, F., Chen, Y., Qian, C., Feng, J.: PPDM: parallel point detection and matching for real-time human-object interaction detection. In: CVPR (2020)

    Google Scholar 

  26. Lin, T.Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  27. Lu, C., Krishna, R., Bernstein, M., Fei-Fei, L.: Visual relationship detection with language priors. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 852–869. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_51

    Chapter  Google Scholar 

  28. Mai, L., Jin, H., Lin, Z., Fang, C., Brandt, J., Liu, F.: Spatial-semantic image search by visual feature synthesis. In: CVPR (2017)

    Google Scholar 

  29. Mikolov, T., Grave, E., Bojanowski, P., Puhrsch, C., Joulin, A.: Advances in pre-training distributed word representations. In: LREC (2018)

    Google Scholar 

  30. Newell, A., Deng, J.: Pixels to graphs by associative embedding. In: NeurIPS (2017)

    Google Scholar 

  31. Peyre, J., Laptev, I., Schmid, C., Sivic, J.: Weakly-supervised learning of visual relations. In: ICCV (2017)

    Google Scholar 

  32. Peyre, J., Laptev, I., Schmid, C., Sivic, J.: Detecting rare visual relations using analogies. In: ICCV (2019)

    Google Scholar 

  33. Plummer, B.A., Mallya, A., Cervantes, C.M., Hockenmaier, J., Lazebnik, S.: Phrase localization and visual relationship detection with comprehensive linguistic cues. In: ICCV (2017)

    Google Scholar 

  34. Qi, S., Wang, W., Jia, B., Shen, J., Zhu, S.-C.: Learning human-object interactions by graph parsing neural networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11213, pp. 407–423. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01240-3_25

    Chapter  Google Scholar 

  35. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NeurIPS (2015)

    Google Scholar 

  36. Shen, L., Yeung, S., Hoffman, J., Mori, G., Fei-Fei, L.: Scaling human-object interaction recognition through zero-shot learning. In: WACV (2018)

    Google Scholar 

  37. Sun, C., Shrivastava, A., Vondrick, C., Murphy, K., Sukthankar, R., Schmid, C.: Actor-centric relation network. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 335–351. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_20

    Chapter  Google Scholar 

  38. Vaswani, A., et al.: Attention is all you need. In: NeurIPS (2017)

    Google Scholar 

  39. Vedantam, R., Lin, X., Batra, T., Lawrence Zitnick, C., Parikh, D.: Learning common sense through visual abstraction. In: ICCV (2015)

    Google Scholar 

  40. Wan, B., Zhou, D., Zhou, Y., Li, R., He, X.: Pose-aware multi-level feature network for human object interaction detection. In: ICCV (2019)

    Google Scholar 

  41. Wang, T., et al.: Deep contextual attention for human-object interaction detection. In: ICCV (2019)

    Google Scholar 

  42. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: CVPR (2018)

    Google Scholar 

  43. Xu, D., Zhu, Y., Choy, C.B., Fei-Fei, L.: Scene graph generation by iterative message passing. In: CVPR (2017)

    Google Scholar 

  44. Yang, J., Lu, J., Lee, S., Batra, D., Parikh, D.: Graph R-CNN for scene graph generation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 690–706. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_41

    Chapter  Google Scholar 

  45. Yang, X., Zhang, H., Cai, J.: Shuffle-then-assemble: learning object-agnostic visual relationship features. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11216, pp. 38–54. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01258-8_3

    Chapter  Google Scholar 

  46. Yao, B., Fei-Fei, L.: Modeling mutual context of object and human pose in human-object interaction activities. In: CVPR (2010)

    Google Scholar 

  47. Yi, K., Wu, J., Gan, C., Torralba, A., Kohli, P., Tenenbaum, J.B.: Neural-symbolic VQA: disentangling reasoning from vision and language understanding. In: NeurIPS (2018)

    Google Scholar 

  48. Yin, X., Ordonez, V.: Obj2text: generating visually descriptive language from object layouts. In: EMNLP (2017)

    Google Scholar 

  49. Zellers, R., Yatskar, M., Thomson, S., Choi, Y.: Neural motifs: scene graph parsing with global context. In: CVPR (2018)

    Google Scholar 

  50. Zhang, H., Kyaw, Z., Yu, J., Chang, S.F.: PPR-FCN: weakly supervised visual relation detection via parallel pairwise R-FCN. In: ICCV (2017)

    Google Scholar 

  51. Zhou, P., Chi, M.: Relation parsing neural network for human-object interaction detection. In: ICCV (2019)

    Google Scholar 

  52. Zhuang, B., Liu, L., Shen, C., Reid, I.: Towards context-aware interaction recognition for visual relationship detection. In: ICCV (2017)

    Google Scholar 

  53. Zitnick, C.L., Parikh, D.: Bringing semantics into focus using visual abstraction. In: CVPR (2013)

    Google Scholar 

Download references

Acknowledgements

We thank the support from Google Faculty Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Gao .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 27590 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gao, C., Xu, J., Zou, Y., Huang, JB. (2020). DRG: Dual Relation Graph for Human-Object Interaction Detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12357. Springer, Cham. https://doi.org/10.1007/978-3-030-58610-2_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58610-2_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58609-6

  • Online ISBN: 978-3-030-58610-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics