Skip to main content

DiVA: Diverse Visual Feature Aggregation for Deep Metric Learning

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12353))

Included in the following conference series:

Abstract

Visual similarity plays an important role in many computer vision applications. Deep metric learning (DML) is a powerful framework for learning such similarities which not only generalize from training data to identically distributed test distributions, but in particular also translate to unknown test classes. However, its prevailing learning paradigm is class-discriminative supervised training, which typically results in representations specialized in separating training classes. For effective generalization, however, such an image representation needs to capture a diverse range of data characteristics. To this end, we propose and study multiple complementary learning tasks, targeting conceptually different data relationships by only resorting to the available training samples and labels of a standard DML setting. Through simultaneous optimization of our tasks we learn a single model to aggregate their training signals, resulting in strong generalization and state-of-the-art performance on multiple established DML benchmark datasets.

T. Milbich, K. Roth, B. Ommer and J. P. Cohen—Equal first and last authorship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    To compute d, we use the euclidean distance between samples. Since \(\phi \) is regularized to the unit hypersphere \(\mathbb {S}^{D-1}\), the euclidean distance correlates with cosine distance.

References

  1. Bachman, P., Hjelm, R.D., Buchwalter, W.: Learning representations by maximizing mutual information across views. arXiv preprint arXiv:1906.00910 (2019)

  2. Bautista, M.A., Sanakoyeu, A., Tikhoncheva, E., Ommer, B.: Cliquecnn: deep unsupervised exemplar learning. In: Advances in Neural Information Processing Systems, pp. 3846–3854 (2016)

    Google Scholar 

  3. Belghazi, M.I., Rajeswar, S., Mastropietro, O., Rostamzadeh, N., Mitrovic, J., Courville, A.: Hierarchical adversarially learned inference (2018)

    Google Scholar 

  4. Berthelot, D., Raffel, C., Roy, A., Goodfellow, I.: Understanding and improving interpolation in autoencoders via an adversarial regularizer (2018)

    Google Scholar 

  5. Bhattarai, B., Sharma, G., Jurie, F.: Cp-mtml: coupled projection multi-task metric learning for large scale face retrieval. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4226–4235 (2016)

    Google Scholar 

  6. Büchler, U., Brattoli, B., Ommer, B.: Improving spatiotemporal self-supervision by deep reinforcement learning. In: Proceedings of the European Conference on Computer Vision (ECCV) (2018)

    Google Scholar 

  7. Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. In: European Conference on Computer Vision (2018)

    Google Scholar 

  8. Chawla, N.V., Japkowicz, N., Kotcz, A.: Editorial: special issue on learning from imbalanced data sets. SIGKDD Explor. Newsl. 6, 1–6 (2004)

    Google Scholar 

  9. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. arXiv preprint arXiv:2002.05709 (2020)

  10. Chen, W., Chen, X., Zhang, J., Huang, K.: Beyond triplet loss: a deep quadruplet network for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  11. Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., Abbeel, P.: Infogan: Interpretable representation learning by information maximizing generative adversarial nets (2016)

    Google Scholar 

  12. Deng, J., Guo, J., Xue, N., Zafeiriou, S.: Arcface: additive angular margin loss for deep face recognition (2018)

    Google Scholar 

  13. Donahue, J., Krähenbühl, P., Darrell, T.: Adversarial feature learning (2016)

    Google Scholar 

  14. Duan, Y., Zheng, W., Lin, X., Lu, J., Zhou, J.: Deep adversarial metric learning. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018

    Google Scholar 

  15. Dumoulin, V., Belghazi, I., Poole, B., Mastropietro, O., Lamb, A., Arjovsky, M., Courville, A.: Adversarially learned inference (2016)

    Google Scholar 

  16. Gautheron, L., Morvant, E., Habrard, A., Sebban, M.: Metric learning from imbalanced data (2019)

    Google Scholar 

  17. Ge, W.: Deep metric learning with hierarchical triplet loss. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 269–285 (2018)

    Google Scholar 

  18. Gidaris, S., Singh, P., Komodakis, N.: Unsupervised representation learning by predicting image rotations. In: International Conference on Learning Representations (2018)

    Google Scholar 

  19. Gutmann, M., Hyvärinen, A.: Noise-contrastive estimation: a new estimation principle for unnormalized statistical models. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics (2010)

    Google Scholar 

  20. Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an invariant mapping. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2006)

    Google Scholar 

  21. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning (2019)

    Google Scholar 

  22. Hendrycks, D., Mazeika, M., Kadavath, S., Song, D.: Using self-supervised learning can improve model robustness and uncertainty. CoRR abs/1906.12340 (2019). http://arxiv.org/abs/1906.12340

  23. Hsu, K., Levine, S., Finn, C.: Unsupervised learning via meta-learning (2018)

    Google Scholar 

  24. Hu, J., Lu, J., Tan, Y.: Discriminative deep metric learning for face verification in the wild. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (2014)

    Google Scholar 

  25. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning (2015)

    Google Scholar 

  26. Jacob, P., Picard, D., Histace, A., Klein, E.: Metric learning with horde: high-order regularizer for deep embeddings. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  27. Jegou, H., Douze, M., Schmid, C.: Product quantization for nearest neighbor search. IEEE Trans. Pattern Anal. Mach. Intell. 33(1), 117–128 (2011)

    Google Scholar 

  28. Kim, W., Goyal, B., Chawla, K., Lee, J., Kwon, K.: Attention-based ensemble for deep metric learning. In: Proceedings of the European Conference on Computer Vision (ECCV) (2018)

    Google Scholar 

  29. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization (2015)

    Google Scholar 

  30. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: Proceedings of the International Conference on Learning Representations (ICLR) (2013)

    Google Scholar 

  31. Konno, T., Iwazume, M.: Cavity filling: pseudo-feature generation for multi-class imbalanced data problems in deep learning (2018)

    Google Scholar 

  32. Krause, J., Stark, M., Deng, J., Fei-Fei, L.: 3D object representations for fine-grained categorization. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 554–561 (2013)

    Google Scholar 

  33. Lin, X., Duan, Y., Dong, Q., Lu, J., Zhou, J.: Deep variational metric learning. In: The European Conference on Computer Vision (ECCV), September 2018

    Google Scholar 

  34. Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., Song, L.: Sphereface: deep hypersphere embedding for face recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  35. Manning, C., Raghavan, P., Schütze, H.: Introduction to information retrieval. Nat. Lang. Eng. 16(1), 100–103 (2010)

    MATH  Google Scholar 

  36. Milbich, T., Ghori, O., Diego, F., Ommer, B.: Unsupervised representation learning by discovering reliable image relations. Pattern Recogn. (PR) 102, 107107 (2020)

    Google Scholar 

  37. Milbich, T., Roth, K., Brattoli, B., Ommer, B.: Sharing matters for generalization in deep metric learning. IEEE Trans. Pattern Anal. Mach. Intell. (2020)

    Google Scholar 

  38. Misra, I., van der Maaten, L.: Self-supervised learning of pretext-invariant representations (2019)

    Google Scholar 

  39. Movshovitz-Attias, Y., Toshev, A., Leung, T.K., Ioffe, S., Singh, S.: No fuss distance metric learning using proxies. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 360–368 (2017)

    Google Scholar 

  40. Noroozi, M., Favaro, P.: Unsupervised learning of visual representations by solving jigsaw puzzles. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 69–84. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_5

    Chapter  Google Scholar 

  41. Noroozi, M., Vinjimoor, A., Favaro, P., Pirsiavash, H.: Boosting self-supervised learning via knowledge transfer. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9359–9367 (2018)

    Google Scholar 

  42. Oh Song, H., Xiang, Y., Jegelka, S., Savarese, S.: Deep metric learning via lifted structured feature embedding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4004–4012 (2016)

    Google Scholar 

  43. Oord, A., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding (2018), arXiv preprint arXiv:1807.03748

  44. Opitz, M., Waltner, G., Possegger, H., Bischof, H.: Deep metric learning with bier: boosting independent embeddings robustly. IEEE Trans. Pattern Anal. Mach. Intell. 42, 276–290 (2018)

    Google Scholar 

  45. Paszke, A., et al.: Automatic differentiation in pytorch. In: NIPS-W (2017)

    Google Scholar 

  46. Pu, J., Jiang, Y.G., Wang, J., Xue, X.: Which looks like which: exploring inter-class relationships in fine-grained visual categorization. In: Proceedings of the IEEE European Conference on Computer Vision (ECCV), pp. 425–440 (2014)

    Google Scholar 

  47. Qian, Q., Shang, L., Sun, B., Hu, J., Li, H., Jin, R.: Softtriple loss: deep metric learning without triplet sampling (2019)

    Google Scholar 

  48. Ren, S., He, K., Girshick, R.B., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NeuRips (2015)

    Google Scholar 

  49. Roth, K., Brattoli, B., Ommer, B.: Mic: mining interclass characteristics for improved metric learning. In: The IEEE International Conference on Computer Vision (ICCV), October 2019

    Google Scholar 

  50. Roth, K., Milbich, T., Ommer, B.: Pads: policy-adapted sampling for visual similarity learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  51. Roth, K., Milbich, T., Sinha, S., Gupta, P., Ommer, B., Cohen, J.P.: Revisiting training strategies and generalization performance in deep metric learning. In: Proceedings of the International Conference on Machine Learning (ICML) (2020)

    Google Scholar 

  52. Sanakoyeu, A., Tschernezki, V., Buchler, U., Ommer, B.: Divide and conquer the embedding space for metric learning. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  53. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 815–823 (2015)

    Google Scholar 

  54. Sohn, K.: Improved deep metric learning with multi-class n-pair loss objective. In: Advances in Neural Information Processing Systems, pp. 1857–1865 (2016)

    Google Scholar 

  55. Tian, Y., Krishnan, D., Isola, P.: Contrastive multiview coding. arXiv preprint arXiv:1906.05849 (2019)

  56. Tishby, N., Zaslavsky, N.: Deep learning and the information bottleneck principle (2015)

    Google Scholar 

  57. Verma, V., et al.: Manifold mixup: better representations by interpolating hidden states (2018)

    Google Scholar 

  58. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing robust features with denoising autoencoders (2008)

    Google Scholar 

  59. Wagemans, J., et al.: A century of gestalt psychology in visual perception: I. perceptual grouping and figure-ground organization. Psychol. Bull. 138(6), 1172 (2012)

    Google Scholar 

  60. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The caltech-ucsd birds-200-2011 dataset (2011)

    Google Scholar 

  61. Wang, J., Zhou, F., Wen, S., Liu, X., Lin, Y.: Deep metric learning with angular loss. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2593–2601 (2017)

    Google Scholar 

  62. Wang, X., Hua, Y., Kodirov, E., Hu, G., Garnier, R., Robertson, N.M.: Ranked list loss for deep metric learning. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  63. Wang, X., Han, X., Huang, W., Dong, D., Scott, M.R.: Multi-similarity loss with general pair weighting for deep metric learning. CoRR abs/1904.06627 (2019), http://arxiv.org/abs/1904.06627

  64. Wu, C.Y., Manmatha, R., Smola, A.J., Krahenbuhl, P.: Sampling matters in deep embedding learning. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2840–2848 (2017)

    Google Scholar 

  65. Wu, Z., Xiong, Y., Yu, S., Lin, D.: Unsupervised feature learning via non-parametric instance-level discrimination (2018)

    Google Scholar 

  66. Xuan, H., Souvenir, R., Pless, R.: Deep randomized ensembles for metric learning. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 723–734 (2018)

    Google Scholar 

  67. Zhai, A., Wu, H.Y.: Classification is a strong baseline for deep metric learning (2018)

    Google Scholar 

  68. Zhao, Y., Jin, Z., Qi, G.J., Lu, H., Hua, X.S.: An adversarial approach to hard triplet generation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 501–517 (2018)

    Google Scholar 

  69. Zheng, W., Chen, Z., Lu, J., Zhou, J.: Hardness-aware deep metric learning. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

Download references

Acknowledgements

This work has been supported by hardware donations from NVIDIA (DGX-1), resources from Compute Canada, in part by Bayer AG and the German federal ministry BMWi within the project “KI Absicherung”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timo Milbich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Milbich, T. et al. (2020). DiVA: Diverse Visual Feature Aggregation for Deep Metric Learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12353. Springer, Cham. https://doi.org/10.1007/978-3-030-58598-3_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58598-3_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58597-6

  • Online ISBN: 978-3-030-58598-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics