Skip to main content

Unifying Deep Local and Global Features for Image Search

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12365))

Included in the following conference series:

Abstract

Image retrieval is the problem of searching an image database for items that are similar to a query image. To address this task, two main types of image representations have been studied: global and local image features. In this work, our key contribution is to unify global and local features into a single deep model, enabling accurate retrieval with efficient feature extraction. We refer to the new model as DELG, standing for DEep Local and Global features. We leverage lessons from recent feature learning work and propose a model that combines generalized mean pooling for global features and attentive selection for local features. The entire network can be learned end-to-end by carefully balancing the gradient flow between two heads – requiring only image-level labels. We also introduce an autoencoder-based dimensionality reduction technique for local features, which is integrated into the model, improving training efficiency and matching performance. Comprehensive experiments show that our model achieves state-of-the-art image retrieval on the Revisited Oxford and Paris datasets, and state-of-the-art single-model instance-level recognition on the Google Landmarks dataset v2. Code and models are available at https://github.com/tensorflow/models/tree/master/research/delf.

B. Cao and A. Araujo—Contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arandjelović, R., Gronat, P., Torii, A., Pajdla, T., Sivic, J.: NetVLAD: CNN architecture for weakly supervised place recognition. In: Proceedings of the CVPR (2016)

    Google Scholar 

  2. Araujo, A., Norris, W., Sim, J.: Computing receptive fields of convolutional neural networks. Distill (2019). https://distill.pub/2019/computing-receptive-fields

  3. Avrithis, Y., Tolias, G.: Hough pyramid matching: speeded-up geometry re-ranking for large scale image retrieval. Int. J. Comput. Vision 107(1), 1–19 (2013). https://doi.org/10.1007/s11263-013-0659-3

    Article  Google Scholar 

  4. Babenko, A., Lempitsky, V.: Aggregating local deep features for image retrieval. In: Proceedings of the ICCV (2015)

    Google Scholar 

  5. Babenko, A., Slesarev, A., Chigorin, A., Lempitsky, V.: Neural codes for image retrieval. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 584–599. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_38

    Chapter  Google Scholar 

  6. Barroso-Laguna, A., Riba, E., Ponsa, D., Mikolajczyk, K.: Key.Net: keypoint detection by handcrafted and learned CNN filters. In: Proceedings of the ICCV (2019)

    Google Scholar 

  7. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). CVIU 110(3), 346–359 (2008)

    Google Scholar 

  8. Chang, C., Yu, G., Liu, C., Volkovs, M.: Explore-exploit graph traversal for image retrieval. In: Proceedings of the CVPR (2019)

    Google Scholar 

  9. Chopra, S., Hadsell, R., LeCun, Y.: Learning a dimilarity metric discriminatively, with application to face verification. In: Proceedings of the CVPR (2005)

    Google Scholar 

  10. Chum, O., Philbin, J., Sivic, J., Isard, M., Zisserman, A.: Total recall: automatic query expansion with a generative feature model for object retrieval. In: Proceedings of the ICCV (2007)

    Google Scholar 

  11. Deng, J., Guo, J., Xue, N., Zafeiriou, S.: ArcFace: additive angular margin loss for deep face recognition. In: Proceedings of the CVPR (2019)

    Google Scholar 

  12. DeTone, D., Malisiewicz, T., Rabinovich, A.: SuperPoint: self-supervised interest point detection and description. In: Proceedings of the CVPR Workshops (2018)

    Google Scholar 

  13. Dugas, C., Bengio, Y., Nadeau, C., Garcia, R.: Incorporating second-order functional knowledge for better option pricing. In: Proceedings of the NIPS (2001)

    Google Scholar 

  14. Dusmanu, M., et al.: D2-Net: a trainable CNN for joint detection and description of local features. In: Proceedings of the CVPR (2019)

    Google Scholar 

  15. Fischler, M., Bolles, R.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  16. Gordo, A., Almazán, J., Revaud, J., Larlus, D.: Deep image retrieval: learning global representations for image search. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 241–257. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_15

    Chapter  Google Scholar 

  17. Gordo, A., Almazán, J., Revaud, J., Larlus, D.: End-to-end learning of deep visual representations for image retrieval. Int. J. Comput. Vision 124(2), 237–254 (2017). https://doi.org/10.1007/s11263-017-1016-8

    Article  MathSciNet  Google Scholar 

  18. Gordo, A., Rodriguez-Serrano, J.A., Perronin, F., Valveny, E.: Leveraging category-level labels for instance-level image retrieval. In: Proceedings of the CVPR (2012)

    Google Scholar 

  19. He, K., Lu, Y., Sclaroff, S.: Local descriptors optimized for average precision. In: Proceedings of the CVPR (2018)

    Google Scholar 

  20. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the CVPR (2016)

    Google Scholar 

  21. Hinton, G.: Connectionist learning procedures. Artif. Intell. 40(1–3), 185–234 (1989)

    Article  Google Scholar 

  22. Iscen, A., Tolias, G., Avrithis, Y., Furon, T., Chum, O.: Efficient diffusion on region manifolds: recovering small objects with compact CNN representations. In: Proceedings of the CVPR (2017)

    Google Scholar 

  23. Jégou, H., Chum, O.: Negative evidences and co-occurences in image retrieval: the benefit of PCA and whitening. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7573, pp. 774–787. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33709-3_55

    Chapter  Google Scholar 

  24. Jegou, H., Douze, M., Schmid, C.: Hamming embedding and weak geometric consistency for large scale image search. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5302, pp. 304–317. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88682-2_24

    Chapter  Google Scholar 

  25. Jégou, H., Douze, M., Schmidt, C., Perez, P.: Aggregating local descriptors into a compact image representation. In: Proceedings of the CVPR (2010)

    Google Scholar 

  26. Jégou, H., Perronnin, F., Douze, M., Sanchez, J., Perez, P., Schmid, C.: Aggregating local image descriptors into compact codes. IEEE Trans. Pattern Anal. Mach. Intell. 34(9), 1704–1716 (2012)

    Article  Google Scholar 

  27. Jegou, H., Zisserman, A.: Triangulation embedding and democratic aggregation for image search. In: Proceedings of the CVPR (2014)

    Google Scholar 

  28. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60, 91–110 (2004). https://doi.org/10.1023/B:VISI.0000029664.99615.94

    Article  Google Scholar 

  29. Luo, Z., et al.: ContextDesc: local descriptor augmentation with cross-modality context. In: Proceedings of the CVPR (2019)

    Google Scholar 

  30. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from maximally stable extremal regions. Image Vis. Comput. 22(10), 761–767 (2004)

    Article  Google Scholar 

  31. Mikolajczyk, K., Matas, J.: Improving descriptors for fast tree matching by optimal linear projection. In: Proceedings of the ICCV (2007)

    Google Scholar 

  32. Mikolajczyk, K., Schmid, C.: An affine invariant interest point detector. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 128–142. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-47969-4_9

    Chapter  Google Scholar 

  33. Mishchuk, A., Mishkin, D., Radenovic, F., Matas, J.: Working hard to know your neighbor’s margins: local descriptor learning loss. In: Proceedings of the NIPS (2017)

    Google Scholar 

  34. Mishkin, D., Radenović, F., Matas, J.: Repeatability is not enough: learning affine regions via discriminability. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11213, pp. 287–304. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01240-3_18

    Chapter  Google Scholar 

  35. Mukundan, A., Tolias, G., Bursuc, A., Jégou, H., Chum, O.: Understanding and improving kernel local descriptors. Int. J. Comput. Vision 127(11), 1723–1737 (2018). https://doi.org/10.1007/s11263-018-1137-8

    Article  Google Scholar 

  36. Mukundan, A., Tolias, G., Chum, O.: Explicit spatial encoding for deep local descriptors. In: Proceedings of the CVPR (2019)

    Google Scholar 

  37. Ng, T., Balntas, V., Tian, Y., Mikolajczyk, K.: SOLAR: second-order loss and attention for image retrieval. In: Proceedings of the ECCV (2020)

    Google Scholar 

  38. Nistér, D., Stewenius, H.: Scalable recognition with a vocabulary tree. In: Proceedings of the CVPR (2006)

    Google Scholar 

  39. Noh, H., Araujo, A., Sim, J., Weyand, T., Han, B.: Large-scale image retrieval with attentive deep local features. In: Proceedings of the ICCV (2017)

    Google Scholar 

  40. Obdrzalek, S., Matas, J.: Sub-linear indexing for large scale object recognition. In: Proceedings of the BMVC (2005)

    Google Scholar 

  41. Ono, Y., Trulls, E., Fua, P., Yi, K.M.: LF-Net: learning local features from images. In: Proceedings of the NIPS (2018)

    Google Scholar 

  42. Ozaki, K., Yokoo, S.: Large-scale landmark retrieval/recognition under a noisy and diverse dataset. arXiv:1906.04087 (2019)

  43. Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with large vocabularies and fast spatial matching. In: Proceedings of the CVPR (2007)

    Google Scholar 

  44. Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Lost in quantization: improving particular object retrieval in large scale image databases. In: Proceedings of the CVPR (2008)

    Google Scholar 

  45. Radenović, F., Iscen, A., Tolias, G., Avrithis, Y., Chum, O.: Revisiting Oxford and Paris: large-scale image retrieval benchmarking. In: Proceedings of the CVPR (2018)

    Google Scholar 

  46. Radenović, F., Tolias, G., Chum, O.: Fine-tuning CNN image retrieval with no human annotation. IEEE Trans. Pattern Anal. Mach. Intell. 41(7), 1655–1668 (2018)

    Article  Google Scholar 

  47. Revaud, J., Almazan, J., de Rezende, R.S., de Souza, C.R.: Learning with average precision: training image retrieval with a listwise loss. In: Proceedings of the ICCV (2019)

    Google Scholar 

  48. Revaud, J., Souze, C.D., Weinzaepfel, P., Humenberger, M.: R2D2: repeatable and reliable detector and descriptor. In: Proceedings of the NeurIPS (2019)

    Google Scholar 

  49. Sarlin, P.E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: robust hierarchical localization at large scale. In: Proceedings of the CVPR (2019)

    Google Scholar 

  50. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: Proceedings of the CVPR (2015)

    Google Scholar 

  51. Silberman, N., Guadarrama, S.: TensorFlow-Slim Image Classification Model Library (2016). https://github.com/tensorflow/models/tree/master/research/slim

  52. Simeoni, O., Avrithis, Y., Chum, O.: Local features and visual words emerge in activations. In: Proceedings of the CVPR (2019)

    Google Scholar 

  53. Sivic, J., Zisserman, A.: Video Google: a text retrieval approach to object matching in videos. In: Proceedings of the ICCV (2003)

    Google Scholar 

  54. Taira, H., et al.: InLoc: indoor visual localization with dense matching and view synthesis. In: Proceedings of the CVPR (2018)

    Google Scholar 

  55. Teichmann, M., Araujo, A., Zhu, M., Sim, J.: Detect-to-retrieve: efficient regional aggregation for image search. In: Proceedings of the CVPR (2019)

    Google Scholar 

  56. Tian, Y., Yu, X., Fan, B., Wu, F., Heijnen, H., Balntas, V.: SOSNet: second order similarity regularization for local descriptor learning. In: Proceedings of the CVPR (2019)

    Google Scholar 

  57. Tolias, G., Avrithis, Y., Jégou, H.: Image search with selective match kernels: aggregation across single and multiple images. Int. J. Comput. Vis. 116, 247–261 (2016). https://doi.org/10.1007/s11263-015-0810-4

    Article  MathSciNet  Google Scholar 

  58. Tolias, G., Sicre, R., Jégou, H.: Particular object retrieval with integral max-pooling of CNN activations. In: Proceeedings of the ICLR (2015)

    Google Scholar 

  59. Wang, F., Xiang, X., Cheng, J., Yuille, A.: NormFace: L2 hypersphere embedding for face verification. In: Proceedings of the ACM MM (2017)

    Google Scholar 

  60. Wang, H., et al.: CosFace: large margin cosine loss for deep dace recognition. In: Proceedings of the CVPR (2018)

    Google Scholar 

  61. Weyand, T., Araujo, A., Cao, B., Sim, J.: Google landmarks dataset v2 - a large-scale benchmark for instance-level recognition and retrieval. In: Proceedings of the CVPR (2020)

    Google Scholar 

  62. Yi, K.M., Trulls, E., Lepetit, V., Fua, P.: LIFT: learned invariant feature transform. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 467–483. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_28

    Chapter  Google Scholar 

  63. Yokoo, S., Ozaki, K., Simo-Serra, E., Iizuka, S.: Two-stage discriminative re-ranking for large-scale landmark retrieval. In: Proceedings of the CVPR Workshops (2020)

    Google Scholar 

  64. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Araujo .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 7485 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cao, B., Araujo, A., Sim, J. (2020). Unifying Deep Local and Global Features for Image Search. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12365. Springer, Cham. https://doi.org/10.1007/978-3-030-58565-5_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58565-5_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58564-8

  • Online ISBN: 978-3-030-58565-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics