Skip to main content

On the Usage of the Trifocal Tensor in Motion Segmentation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12365))

Included in the following conference series:

Abstract

Motion segmentation, i.e., the problem of clustering data in multiple images based on different 3D motions, is an important task for reconstructing and understanding dynamic scenes. In this paper we address motion segmentation in multiple images by combining partial results coming from triplets of images, which are obtained by fitting a number of trifocal tensors to correspondences. We exploit the fact that the trifocal tensor is a stronger model than the fundamental matrix, as it provides fewer but more reliable matches over three images than fundamental matrices provide over the two. We also consider an alternative solution which merges partial results coming from both triplets and pairs of images, showing the strength of three-frame segmentation in a combination with two-frame segmentation. Our real experiments on standard as well as new datasets demonstrate the superior accuracy of the proposed approaches when compared to previous techniques .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Observe that these permutations are represented as square matrices since we are assuming that the number of motions is known and constant over all the frames.

  2. 2.

    https://github.com/federica-arrigoni/ECCV_20.

  3. 3.

    https://github.com/federica-arrigoni/ICCV_19.

  4. 4.

    http://www.diegm.uniud.it/fusiello/demo/rpa/.

  5. 5.

    https://github.com/LauraFJulia/TFT_vs_Fund.

  6. 6.

    This value was optimally determined on a small subset of sequences (Penguin, Flowers, Pencils and Bag [3]). As for the remaining parameters of RPA (e.g. the number of sampled hypotheses), we used default values provided in the code by the authors.

  7. 7.

    This choice is motivated by the fact that, in the presence of high corruption among the correspondences, one may not expect to classify all the points, as explained in [3]. Observe also that this error metric reports the fraction of wrong labelled data, that one wants to minimize in practice.

References

  1. Arrigoni, F., Fusiello, A.: Synchronization problems in computer vision with closed-form solutions. Int. J. Comput. Vis. 128, 26–52 (2020)

    Article  MathSciNet  Google Scholar 

  2. Arrigoni, F., Pajdla, T.: Motion segmentation via synchronization. In: IEEE International Conference on Computer Vision Workshops (ICCVW) (2019)

    Google Scholar 

  3. Arrigoni, F., Pajdla, T.: Robust motion segmentation from pairwise matches. In: Proceedings of the International Conference on Computer Vision (2019)

    Google Scholar 

  4. Barath, D., Matas, J.: Multi-class model fitting by energy minimization and mode-seeking. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11220, pp. 229–245. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01270-0_14

    Chapter  Google Scholar 

  5. Chin, T.J., Suter, D., Wang, H.: Multi-structure model selection via kernel optimisation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3586–3593 (2010)

    Google Scholar 

  6. Delong, A., Osokin, A., Isack, H.N., Boykov, Y.: Fast approximate energy minimization with label costs. Int. J. Comput. Vis. 96(1), 1–27 (2012)

    Article  MathSciNet  Google Scholar 

  7. Elhamifar, E., Vidal, R.: Sparse subspace clustering: algorithm, theory, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2765–2781 (2013)

    Article  Google Scholar 

  8. Fischler, M., Bolles, R.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Morgan Kaufmann Readings Ser. 24, 726–740 (1987)

    Google Scholar 

  9. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI vision benchmark suite. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2012)

    Google Scholar 

  10. Hartley, R., Vidal, R.: The multibody trifocal tensor: motion segmentation from 3 perspective views. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. I-769-I-775, June 2004. https://doi.org/10.1109/CVPR.2004.1315109

  11. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  12. Hartley, R.: Lines and points in three views and the trifocal tensor. Int. J. Comput. Vis. 22(2), 125–140 (1997)

    Article  Google Scholar 

  13. Holland, P.W., Welsch, R.E.: Robust regression using iteratively reweighted least-squares. Commun. Stat. Theory Methods 6(9), 813–827 (1977)

    Article  Google Scholar 

  14. Isack, H., Boykov, Y.: Energy-based geometric multi-model fitting. Int. J. Comput. Vis. 97(2), 123–147 (2012)

    Article  Google Scholar 

  15. Ji, P., Li, H., Salzmann, M., Dai, Y.: Robust motion segmentation with unknown correspondences. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 204–219. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_14

    Chapter  Google Scholar 

  16. Ji, P., Li, H., Salzmann, M., Zhong, Y.: Robust multi-body feature tracker: a segmentation-free approach. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  17. Ji, P., Salzmann, M., Li, H.: Shape interaction matrix revisited and robustified: efficient subspace clustering with corrupted and incomplete data. In: Proceedings of the International Conference on Computer Vision, pp. 4687–4695 (2015)

    Google Scholar 

  18. Julià, L.F., Monasse, P.: A critical review of the trifocal tensor estimation. In: Paul, M., Hitoshi, C., Huang, Q. (eds.) PSIVT 2017. LNCS, vol. 10749, pp. 337–349. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75786-5_28

    Chapter  Google Scholar 

  19. Kim, J.B., Kim, H.J.: Efficient region-based motion segmentation for a video monitoring system. Pattern Recogn. Lett. 24(1), 113–128 (2003)

    Article  Google Scholar 

  20. Kuang, D., Yun, S., Park, H.: SymNMF: nonnegative low-rank approximation of a similarity matrix for graph clustering. J. Global Optim. 62(3), 545–574 (2014). https://doi.org/10.1007/s10898-014-0247-2

    Article  MathSciNet  MATH  Google Scholar 

  21. Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res. Logistics Q. 2(2), 83–97 (1955)

    Article  MathSciNet  Google Scholar 

  22. Lai, T., Wang, H., Yan, Y., Chin, T.J., Zhao, W.L.: Motion segmentation via a sparsity constraint. IEEE Trans. Intell. Transp. Syst. 18(4), 973–983 (2017)

    Article  Google Scholar 

  23. Li, Z., Guo, J., Cheong, L.F., Zhou, S.Z.: Perspective motion segmentation via collaborative clustering. In: Proceedings of the International Conference on Computer Vision, pp. 1369–1376 (2013)

    Google Scholar 

  24. Lin, Z., Chen, M., Ma, Y.: The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices. eprint arXiv:1009.5055 (2010)

  25. Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., Ma, Y.: Robust recovery of subspace structures by low-rank representation. IEEE Trans. Pattern Anal. Mach. Intel. 26(5), 171–184 (2013)

    Article  Google Scholar 

  26. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004). https://doi.org/10.1023/B:VISI.0000029664.99615.94

    Article  Google Scholar 

  27. Magri, L., Fusiello, A.: Robust multiple model fitting with preference analysis and low-rank approximation. In: Proceedings of the British Machine Vision Conference, pp. 20.1-20.12. BMVA Press, September 2015

    Google Scholar 

  28. Magri, L., Fusiello, A.: Multiple models fitting as a set coverage problem. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3318–3326, June 2016

    Google Scholar 

  29. Olsson, C., Enqvist, O.: Stable structure from motion for unordered image collections. In: Heyden, A., Kahl, F. (eds.) SCIA 2011. LNCS, vol. 6688, pp. 524–535. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21227-7_49

    Chapter  Google Scholar 

  30. Ozden, K.E., Schindler, K., Van Gool, L.: Multibody structure-from-motion in practice. IEEE Trans. Pattern Anal. Mach. Intell. 32(6), 1134–1141 (2010)

    Article  Google Scholar 

  31. Pachauri, D., Kondor, R., Singh, V.: Solving the multi-way matching problem by permutation synchronization. In: Advances in Neural Information Processing Systems 26, pp. 1860–1868. Curran Associates, Inc. (2013)

    Google Scholar 

  32. Pavan, A., Tangwongsan, K., Tirthapura, S., Wu, K.L.: Counting and sampling triangles from a graph stream. Proc. VLDB Endowment 6(14), 1870–1881 (2013)

    Article  Google Scholar 

  33. Rao, S., Tron, R., Vidal, R., Ma, Y.: Motion segmentation in the presence of outlying, incomplete, or corrupted trajectories. Pattern Anal. Mach. Intell. 32(10), 1832–1845 (2010)

    Article  Google Scholar 

  34. Rubino, C., Del Bue, A., Chin, T.J.: Practical motion segmentation for urban street view scenes. In: Proceedings of the IEEE International Conference on Robotics and Automation (2018)

    Google Scholar 

  35. Sabzevari, R., Scaramuzza, D.: Monocular simultaneous multi-body motion segmentation and reconstruction from perspective views. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 23–30 (2014)

    Google Scholar 

  36. Saputra, M.R.U., Markham, A., Trigoni, N.: Visual SLAM and structure from motion in dynamic environments: a survey. ACM Comput. Surveys 51(2), 37:1–37:36 (2018)

    Google Scholar 

  37. Schindler, K., Suter, D., Wang, H.: A model-selection framework for multibody structure-and-motion of image sequences. Int. J. Comput. Vis. 79(2), 159–177 (2008)

    Article  Google Scholar 

  38. Shen, Y., Huang, Q., Srebro, N., Sanghavi, S.: Normalized spectral map synchronization. In: Advances in Neural Information Processing Systems 29, pp. 4925–4933. Curran Associates, Inc. (2016)

    Google Scholar 

  39. Toldo, R., Fusiello, A.: Robust multiple structures estimation with J-Linkage. In: Proceedings of the European Conference on Computer Vision, pp. 537–547 (2008)

    Google Scholar 

  40. Torr, P.H.S., Zisserman, A.: Concerning Bayesian motion segmentation, model averaging, matching and the trifocal tensor. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1406, pp. 511–527. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055687

    Chapter  Google Scholar 

  41. Torr, P.H.S., Zisserman, A., Murray, D.W.: Motion clustering using the trilinear constraint over three views. In: Europe-China Workshop on Geometric Modelling and Invariants for Computer Vision, pp. 118–125. Springer (1995)

    Google Scholar 

  42. Tron, R., Vidal, R.: A benchmark for the comparison of 3-D motion segmentation algorithms. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2007)

    Google Scholar 

  43. Tron, R., Zhou, X., Esteves, C., Daniilidis, K.: Fast multi-image matching via density-based clustering. In: Proceedings of the International Conference on Computer Vision, pp. 4077–4086 (2017)

    Google Scholar 

  44. Vidal, R., Ma, Y., Sastry, S.: Generalized principal component analysis (GPCA). IEEE Trans. Pattern Anal. Mach. Intell. 27(12), 1945–1959 (2005)

    Article  Google Scholar 

  45. Von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007)

    Article  MathSciNet  Google Scholar 

  46. Wang, Y., Liu, Y., Blasch, E., Ling, H.: Simultaneous trajectory association and clustering for motion segmentation. IEEE Signal Process. Lett. 25(1), 145–149 (2018)

    Article  Google Scholar 

  47. Xu, X., Cheong, L.F., Li, Z.: Motion segmentation by exploiting complementary geometric models. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2859–2867 (2018)

    Google Scholar 

  48. Yan, J., Pollefeys, M.: A general framework for motion segmentation: independent, articulated, rigid, non-rigid, degenerate and nondegenerate. In: Proceedings of the European Conference on Computer Vision, pp. 94–106 (2006)

    Google Scholar 

Download references

Acknowledgements

This research was supported by the European Regional Development Fund under IMPACT No. CZ.02.1.01/0.0/0.0/15 003/0000468, R4I 4.0 No. CZ.02.1.01/0.0/0.0/15 003/0000470, EU H2020 ARtwin No. 856994, and EU H2020 SPRING No. 871245 Projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federica Arrigoni .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 69016 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Arrigoni, F., Magri, L., Pajdla, T. (2020). On the Usage of the Trifocal Tensor in Motion Segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12365. Springer, Cham. https://doi.org/10.1007/978-3-030-58565-5_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58565-5_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58564-8

  • Online ISBN: 978-3-030-58565-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics