Skip to main content

Few-Shot Scene-Adaptive Anomaly Detection

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Abstract

We address the problem of anomaly detection in videos. The goal is to identify unusual behaviours automatically by learning exclusively from normal videos. Most existing approaches are usually data-hungry and have limited generalization abilities. They usually need to be trained on a large number of videos from a target scene to achieve good results in that scene. In this paper, we propose a novel few-shot scene-adaptive anomaly detection problem to address the limitations of previous approaches. Our goal is to learn to detect anomalies in a previously unseen scene with only a few frames. A reliable solution for this new problem will have huge potential in real-world applications since it is expensive to collect a massive amount of data for each target scene. We propose a meta-learning based approach for solving this new problem; extensive experimental results demonstrate the effectiveness of our proposed method. All codes are released in https://github.com/yiweilu3/Few-shot-Scene-adaptive-Anomaly-Detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abati, D., Porrello, A., Calderara, S., Cucchiara, R.: Latent space autoregression for novelty detection. In: CVPR (2019)

    Google Scholar 

  2. Chalapathy, R., Menon, A.K., Chawla, S.: Robust, deep and inductive anomaly detection. In: Ceci, M., Hollmén, J., Todorovski, L., Vens, C., Džeroski, S. (eds.) ECML PKDD 2017. LNCS (LNAI), vol. 10534, pp. 36–51. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71249-9_3

    Chapter  Google Scholar 

  3. Del Giorno, A., Bagnell, J.A., Hebert, M.: A discriminative framework for anomaly detection in large videos. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 334–349. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_21

    Chapter  Google Scholar 

  4. Dosovitskiy, A., et al.: FlowNet: learning optical flow with convolutional networks. In: ICCV (2015)

    Google Scholar 

  5. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: ICML (2017)

    Google Scholar 

  6. Gong, D., et al.: Memorizing normality to detect anomaly: memory-augmented deep autoencoder for unsupervised anomaly detection. In: ICCV (2019)

    Google Scholar 

  7. Goodfellow, I., et al.: Generative adversarial nets. In: NeurIPS (2014)

    Google Scholar 

  8. Hasan, M., Choi, J., Neumann, J., Roy-Chowdhury, A.K., Davis, L.S.: Learning temporal regularity in video sequences. In: CVPR (2016)

    Google Scholar 

  9. Kim, J., Grauman, K.: Observe locally, infer globally: a space-time MRF for detecting abnormal activities with incremental updates. In: CVPR (2009)

    Google Scholar 

  10. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. arXiv preprint arXiv:1312.6114 (2013)

  11. Koch, G., Zemel, R., Salakhutdinov, R.: Siamese neural networks for one-shot image recognition. In: ICML Deep Learning Workshop (2015)

    Google Scholar 

  12. Kwolek, B., Kepski, M.: Human fall detection on embedded platform using depth maps and wireless accelerometer. Comput. Methods Programs Biomed. 117, 489–501 (2014)

    Article  Google Scholar 

  13. Lake, B.M., Salakhutdinov, R., Tenenbaum, J.B.: Human-level concept learning through probabilistic program induction. Science 350, 1332–1338 (2015)

    Article  MathSciNet  Google Scholar 

  14. Liu, W., Luo, W., Lian, D., Gao, S.: Future frame prediction for anomaly detection-a new baseline. In: CVPR (2018)

    Google Scholar 

  15. Lu, C., Shi, J., Jia, J.: Abnormal event detection at 150 FPS in Matlab. In: ICCV (2013)

    Google Scholar 

  16. Lu, Y., Reddy, M.K.K., Nabavi, S.S., Wang, Y.: Future frame prediction using convolutional VRNN for anomaly detection. In: AVSS (2019)

    Google Scholar 

  17. Luo, W., Liu, W., Gao, S.: Remembering history with convolutional LSTM for anomaly detection. In: ICME (2017)

    Google Scholar 

  18. Luo, W., Liu, W., Gao, S.: A revisit of sparse coding based anomaly detection in stacked RNN framework. In: ICCV (2017)

    Google Scholar 

  19. Mahadevan, V., Li, W., Bhalodia, V., Vasconcelos, N.: Anomaly detection in crowded scenes. In: CVPR (2010)

    Google Scholar 

  20. Masci, J., Meier, U., Cireşan, D., Schmidhuber, J.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds.) ICANN 2011. LNCS, vol. 6791, pp. 52–59. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21735-7_7

    Chapter  Google Scholar 

  21. Mathieu, M., Couprie, C., LeCun, Y.: Deep multi-scale video prediction beyond mean square error. In: ICLR (2016)

    Google Scholar 

  22. Medel, J.R., Savakis, A.: Anomaly detection in video using predictive convolutional long short-term memory networks. arXiv preprint arXiv:1612.00390 (2016)

  23. Morais, R., Le, V., Tran, T., Saha, B., Mansour, M., Venkatesh, S.: Learning regularity in skeleton trajectories for anomaly detection in videos. In: CVPR (2019)

    Google Scholar 

  24. Munkhdalai, T., Yu, H.: Meta networks. In: ICML (2017)

    Google Scholar 

  25. Nguyen, T.N., Meunier, J.: Anomaly detection in video sequence with appearance-motion correspondence. In: ICCV (2019)

    Google Scholar 

  26. Nogas, J., Khan, S.S., Mihailidis, A.: DeepFall-non-invasive fall detection with deep spatio-temporal convolutional autoencoders. arXiv preprint arXiv:1809.00977 (2018)

  27. Nogas, J., Khan, S.S., Mihailidis, A.: Fall detection from thermal camera using convolutional LSTM autoencoder. Technical report (2019)

    Google Scholar 

  28. Pollard, D.: Asymptotics for least absolute deviation regression estimators. Econom. Theory 7, 186–199 (1991)

    Article  MathSciNet  Google Scholar 

  29. Ravi, S., Larochelle, H.: Optimization as a model for few-shot learning (2016)

    Google Scholar 

  30. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  31. Sabokrou, M., Fathy, M., Hoseini, M.: Video anomaly detection and localization based on the sparsity and reconstruction error of auto-encoder. Electron. Lett. 52, 1222–1224 (2016)

    Article  Google Scholar 

  32. Sabokrou, M., Khalooei, M., Fathy, M., Adeli, E.: Adversarially learned one-class classifier for novelty detection. In: CVPR (2018)

    Google Scholar 

  33. Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., Lillicrap, T.: Meta-learning with memory-augmented neural networks. In: ICML (2016)

    Google Scholar 

  34. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In: NeurIPS (2017)

    Google Scholar 

  35. Sultani, W., Chen, C., Shah, M.: Real-world anomaly detection in surveillance videos. In: CVPR (2018)

    Google Scholar 

  36. Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P.H., Hospedales, T.M.: Learning to compare: relation network for few-shot learning. In: CVPR (2018)

    Google Scholar 

  37. Tudor Ionescu, R., Smeureanu, S., Alexe, B., Popescu, M.: Unmasking the abnormal events in video. In: ICCV (2017)

    Google Scholar 

  38. Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.: Matching networks for one shot learning. In: NeurIPS (2016)

    Google Scholar 

  39. Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers (2003)

    Google Scholar 

  40. Xingjian, S., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: NeurIPS (2015)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the NSERC and UMGF funding. We thank NVIDIA for donating some of the GPUs used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiwei Lu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 293 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lu, Y., Yu, F., Reddy, M.K.K., Wang, Y. (2020). Few-Shot Scene-Adaptive Anomaly Detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12350. Springer, Cham. https://doi.org/10.1007/978-3-030-58558-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58558-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58557-0

  • Online ISBN: 978-3-030-58558-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics