Skip to main content

DeepGMR: Learning Latent Gaussian Mixture Models for Registration

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12350))

Included in the following conference series:

Abstract

Point cloud registration is a fundamental problem in 3D computer vision, graphics and robotics. For the last few decades, existing registration algorithms have struggled in situations with large transformations, noise, and time constraints. In this paper, we introduce Deep Gaussian Mixture Registration (DeepGMR), the first learning-based registration method that explicitly leverages a probabilistic registration paradigm by formulating registration as the minimization of KL-divergence between two probability distributions modeled as mixtures of Gaussians. We design a neural network that extracts pose-invariant correspondences between raw point clouds and Gaussian Mixture Model (GMM) parameters and two differentiable compute blocks that recover the optimal transformation from matched GMM parameters. This construction allows the network learn an SE(3)-invariant feature space, producing a global registration method that is real-time, generalizable, and robust to noise. Across synthetic and real-world data, our proposed method shows favorable performance when compared with state-of-the-art geometry-based and learning-based registration methods.

W. Yuan—Work partially done during an internship at NVIDIA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We performed a parameter search over the voxel size v, which is crucial for FGR’s performance. We used the best results with \(v=0.08\).

References

  1. Aoki, Y., Goforth, H., Srivatsan, R.A., Lucey, S.: Pointnetlk: robust & efficient point cloud registration using pointnet. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7163–7172 (2019)

    Google Scholar 

  2. Beraldin, J.A., Blais, F., Cournoyer, L., Godin, G., Rioux, M.: Active 3d sensing. Modelli e metodi per lo studio e la conservazione dell’architettura storica, University: Scola Normale Superiore, Pisa 10, January 2000

    Google Scholar 

  3. Besl, P., McKay, H.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992). https://doi.org/10.1109/34.121791

    Article  Google Scholar 

  4. Bishop, C.M.: Pattern recognition and machine learning. Springer, New York (2006)

    Google Scholar 

  5. Campbell, D., Petersson, L.: Gogma: globally-optimal gaussian mixture alignment. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5685–5694 (2016)

    Google Scholar 

  6. Campbell, D., Petersson, L., Kneip, L., Li, H., Gould, S.: The alignment of the spheres: Globally-optimal spherical mixture alignment for camera pose estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 11796–11806 (2019)

    Google Scholar 

  7. Chen, C., Li, G., Xu, R., Chen, T., Wang, M., Lin, L.: Clusternet: deep hierarchical cluster network with rigorously rotation-invariant representation for point cloud analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4994–5002 (2019)

    Google Scholar 

  8. Chen, Y., Medioni, G.: Object modelling by registration of multiple range images. Image Vis. Comput. 10(3), 145–155 (1992). Range Image Understanding

    Article  Google Scholar 

  9. Chetverikov, D., Stepanov, D., Krsek, P.: Robust euclidean alignment of 3d point sets: the trimmed iterative closest point algorithm. Image Vis. Comput. 23(3), 299–309 (2005)

    Article  Google Scholar 

  10. Choi, S., Zhou, Q.Y., Koltun, V.: Robust reconstruction of indoor scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5556–5565 (2015)

    Google Scholar 

  11. Choy, C., Gwak, J., Savarese, S.: 4d spatio-temporal convnets: Minkowski convolutional neural networks. arXiv preprint arXiv:1904.08755 (2019)

  12. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Statist. Soc. 1–38 (1977)

    Google Scholar 

  13. Dhawale, A., Shaurya Shankar, K., Michael, N.: Fast monte-carlo localization on aerial vehicles using approximate continuous belief representations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5851–5859 (2018)

    Google Scholar 

  14. Eckart, B., Kim, K., Troccoli, A., Kelly, A., Kautz, J.: Mlmd: maximum likelihood mixture decoupling for fast and accurate point cloud registration. In: 2015 International Conference on 3D Vision (3DV), pp. 241–249. IEEE (2015)

    Google Scholar 

  15. Eckart, B., Kim, K., Kautz, J.: HGMR: Hierarchical gaussian mixtures for adaptive 3d registration. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 705–721 (2018)

    Google Scholar 

  16. Evangelidis, G.D., Horaud, R.: Joint alignment of multiple point sets with batch and incremental expectation-maximization. IEEE Trans. Pattern Anal. Mach. Intell. 40(6), 1397–1410 (2017)

    Article  Google Scholar 

  17. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  18. Fitzgibbon, A.W.: Robust registration of 2d and 3d point sets. Image Vis. Comput. 21(13), 1145–1153 (2003)

    Article  Google Scholar 

  19. Gao, W., Tedrake, R.: Filterreg: robust and efficient probabilistic point-set registration using gaussian filter and twist parameterization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 11095–11104 (2019)

    Google Scholar 

  20. Granger, S., Pennec, X.: Multi-scale EM-ICP: a fast and robust approach for surface registration. ECCV 2002, 69–73 (2002)

    MATH  Google Scholar 

  21. Handa, A., Whelan, T., McDonald, J., Davison, A.: A benchmark for RGB-D visual odometry, 3D reconstruction and SLAM. In: IEEE International Conference on Robotics and Automation (ICRA). Hong Kong, China, May 2014

    Google Scholar 

  22. Horaud, R., Forbes, F., Yguel, M., Dewaele, G., Zhang, J.: Rigid and articulated point registration with expectation conditional maximization. IEEE Trans. Pattern Anal. Mach. Intell. 33(3), 587–602 (2011). http://doi.ieeecomputersociety.org/10.1109/TPAMI.2010.94

  23. Järemo Lawin, F., Danelljan, M., Shahbaz Khan, F., Forssén, P.E., Felsberg, M.: Density adaptive point set registration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3829–3837 (2018)

    Google Scholar 

  24. Jian, B., Vemuri, B.C.: Robust point set registration using Gaussian mixture models. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1633–1645 (2011). http://gmmreg.googlecode.com

  25. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  26. Low, K.L.: Linear least-squares optimization for point-to-plane ICP surface registration. Chapel Hill, University of North Carolina 4(10) (2004)

    Google Scholar 

  27. Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: IJCAI, pp. 674–679 (1981)

    Google Scholar 

  28. Myronenko, A., Song, X.: Point set registration: coherent point drift. IEEE Trans. Pattern Anal. Mach. Intell. 32(12), 2262–2275 (2010)

    Article  Google Scholar 

  29. Paszke, A., et al.: Automatic differentiation in pytorch (2017)

    Google Scholar 

  30. Pomerleau, F., Colas, F., Siegwart, R.: A review of point cloud registration algorithms for mobile robotics. Found. Trends Robot 4(1), 1–104 (2015)

    Google Scholar 

  31. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for 3d classification and segmentation. In: Proceedings Computer Vision and Pattern Recognition (CVPR), IEEE, vol. 1, no. 2, p. 4 (2017)

    Google Scholar 

  32. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: deep hierarchical feature learning on point sets in a metric space. In: Advances in neural information processing systems, pp. 5099–5108 (2017)

    Google Scholar 

  33. Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: International Conference on 3-D Digital Imaging and Modeling, pp. 145–152 (2001)

    Google Scholar 

  34. Rusinkiewicz, S.: A symmetric objective function for ICP. ACM Trans. Graph. (Proceedings SIGGRAPH) 38(4) (2019)

    Google Scholar 

  35. Segal, A., Haehnel, D., Thrun, S.: Generalized ICP. Robot. Sci. Syst. 2, 4 (2009)

    Google Scholar 

  36. Stoyanov, T.D., Magnusson, M., Andreasson, H., Lilienthal, A.: Fast and accurate scan registration through minimization of the distance between compact 3D NDT representations. Int. J. Robot. Res. (2012)

    Google Scholar 

  37. Su, H., et al.: Splatnet: sparse lattice networks for point cloud processing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2530–2539 (2018)

    Google Scholar 

  38. Tabib, W., O’Meadhra, C., Michael, N.: On-manifold GMM registration. IEEE Robot. Automat. Lett. 3(4), 3805–3812 (2018)

    Article  Google Scholar 

  39. Thomas, H., Qi, C.R., Deschaud, J.E., Marcotegui, B., Goulette, F., Guibas, L.J.: Kpconv: flexible and deformable convolution for point clouds. arXiv preprint arXiv:1904.08889 (2019)

  40. Umeyama, S.: Least-squares estimation of transformation parameters between two point patterns. IEEE Trans. Pattern Anal. Mach. Intell. 13(4), 376–380 (1991)

    Article  Google Scholar 

  41. Unnikrishnan, R., Lalonde, J., Vandapel, N., Hebert, M.: Scale selection for the analysis of Point-Sampled curves. In: International Symposium on 3D Data Processing Visualization and Transmission, vol. 0, pp. 1026–1033. IEEE Computer Society, Los Alamitos, CA, USA (2006). http://doi.ieeecomputersociety.org/10.1109/3DPVT.2006.123

  42. Wang, Y., Solomon, J.M.: Deep closest point: learning representations for point cloud registration. In: The IEEE International Conference on Computer Vision (ICCV), October 2019

    Google Scholar 

  43. Wang, Y., Solomon, J.M.: PRNET: Self-supervised learning for partial-to-partial registration. In: Advances in Neural Information Processing Systems, pp. 8812–8824 (2019)

    Google Scholar 

  44. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph CNN for learning on point clouds. ACM Trans. Graph. (TOG) 38(5), 146 (2019)

    Article  Google Scholar 

  45. Wu, Z., et al.: 3d shapenets: a deep representation for volumetric shapes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1912–1920 (2015)

    Google Scholar 

  46. Yang, H., Shi, J., Carlone, L.: Teaser: fast and certifiable point cloud registration. arXiv preprint arXiv:2001.07715 (2020)

  47. Yang, J., Li, H., Campbell, D., Jia, Y.: Go-ICP: a globally optimal solution to 3d ICP point-set registration. IEEE Trans. Pattern Anal. Mach. Intell. 38(11), 2241–2254 (2015)

    Article  Google Scholar 

  48. Zhou, Q.-Y., Park, J., Koltun, V.: Fast global registration. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 766–782. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_47

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wentao Yuan .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 3906 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yuan, W., Eckart, B., Kim, K., Jampani, V., Fox, D., Kautz, J. (2020). DeepGMR: Learning Latent Gaussian Mixture Models for Registration. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12350. Springer, Cham. https://doi.org/10.1007/978-3-030-58558-7_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58558-7_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58557-0

  • Online ISBN: 978-3-030-58558-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics