Skip to main content

Semantic Object Prediction and Spatial Sound Super-Resolution with Binaural Sounds

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12349))

Included in the following conference series:

Abstract

Humans can robustly recognize and localize objects by integrating visual and auditory cues. While machines are able to do the same now with images, less work has been done with sounds. This work develops an approach for dense semantic labelling of sound-making objects, purely based on binaural sounds. We propose a novel sensor setup and record a new audio-visual dataset of street scenes with eight professional binaural microphones and a 360\(^{\circ }\) camera. The co-existence of visual and audio cues is leveraged for supervision transfer. In particular, we employ a cross-modal distillation framework that consists of a vision ‘teacher’ method and a sound ‘student’ method – the student method is trained to generate the same results as the teacher method. This way, the auditory system can be trained without using human annotations. We also propose two auxiliary tasks namely, a) a novel task on Spatial Sound Super-resolution to increase the spatial resolution of sounds, and b) dense depth prediction of the scene. We then formulate the three tasks into one end-to-end trainable multi-tasking network aiming to boost the overall performance. Experimental results on the dataset show that 1) our method achieves good results for all the three tasks; and 2) the three tasks are mutually beneficial – training them together achieves the best performance and 3) the number and the orientations of microphones are both important. The data and code will be released on the project page.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Computational auditory scene analysis: Comput. Speech Lang. 8(4), 297–336 (1994)

    Article  Google Scholar 

  2. Albanie, S., Nagrani, A., Vedaldi, A., Zisserman, A.: Emotion recognition in speech using cross-modal transfer in the wild. In: ACM Multimedia (2018)

    Google Scholar 

  3. Antonacci, F., et al.: Inference of room geometry from acoustic impulse responses. IEEE Trans. Audio Speech Lang Process. 20(10), 2683–2695 (2012)

    Article  Google Scholar 

  4. Arandjelovic, R., Zisserman, A.: Look, listen and learn. In: The IEEE International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  5. Arandjelović, R., Zisserman, A.: Objects that sound. In: Proceedings of the European conference on computer vision (ECCV) (2018)

    Google Scholar 

  6. Argentieri, S., Danès, P., Souères, P.: A survey on sound source localization in robotics: from binaural to array processing methods. Comput. Speech Lang. 34(1), 87–112 (2015)

    Article  Google Scholar 

  7. Aytar, Y., Vondrick, C., Torralba, A.: SoundNet: learning sound representations from unlabeled video. In: Advances in Neural Information Processing Systems (NIPS) (2016)

    Google Scholar 

  8. Balajee Vasudevan, A., Dai, D., Van Gool, L.: Object referring in visual scene with spoken language. In: Winter Conference on Applications of Computer Vision (WACV) (2018)

    Google Scholar 

  9. Barzelay, Z., Schechner, Y.Y.: Harmony in motion. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2007)

    Google Scholar 

  10. Brutzer, S., Höferlin, B., Heidemann, G.: Evaluation of background subtraction techniques for video surveillance. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2011)

    Google Scholar 

  11. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 40(4), 834–848 (2017)

    Article  Google Scholar 

  12. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49

    Chapter  Google Scholar 

  13. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  14. Delmerico, J., et al.: The current state and future outlook of rescue robotics. J. Field Robot. 36(7), 1171–1191 (2019)

    Article  Google Scholar 

  15. Deruyttere, T., Vandenhende, S., Grujicic, D., Van Gool, L., Moens, M.F.: Talk2Car: taking control of your self-driving car. In: EMNLP-IJCNLP (2019)

    Google Scholar 

  16. Dokmanic, I., Parhizkar, R., Walther, A., Lu, Y.M., Vetterli, M.: Acoustic echoes reveal room shape. Proc. Nat. Acad. Sci. 110(30), 12186–12191 (2013)

    Article  Google Scholar 

  17. Fazenda, B., Atmoko, H., Gu, F., Guan, L., Ball, A.: Acoustic based safety emergency vehicle detection for intelligent transport systems. In: ICCAS-SICE (2009)

    Google Scholar 

  18. Fendrich, R.: The merging of the senses. J. Cogn. Neurosci. 5(3), 373–374 (1993)

    Article  Google Scholar 

  19. Gan, C., Zhao, H., Chen, P., Cox, D., Torralba, A.: Self-supervised moving vehicle tracking with stereo sound. In: The IEEE International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  20. Gao, R., Feris, R., Grauman, K.: Learning to separate object sounds by watching unlabeled video. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 36–54. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_3

    Chapter  Google Scholar 

  21. Gao, R., Grauman, K.: 2.5 D visual sound. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 324–333 (2019)

    Google Scholar 

  22. Gao, R., Grauman, K.: Co-separating sounds of visual objects. In: The IEEE International Conference on Computer Vision (ICCV), October 2019

    Google Scholar 

  23. Gaver, W.W.: What in the world do we hear?: an ecological approach to auditory event perception. Ecol. Psychol. 5(1), 1–29 (1993)

    Article  Google Scholar 

  24. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the kitti dataset. Int. J. Robot. Res. (IJRR) 32(11), 1231–1237 (2013)

    Article  Google Scholar 

  25. Godard, C., Aodha, O.M., Firman, M., Brostow, G.J.: Digging into self-supervised monocular depth estimation. In: Proceedings of the IEEE International Conference on Computer Vision (CVPR), pp. 3828–3838 (2019)

    Google Scholar 

  26. Griffin, D., Lim, J.: Signal estimation from modified short-time Fourier transform. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 8, pp. 804–807 (1983)

    Google Scholar 

  27. Hecker, S., Dai, D., Van Gool, L.: End-to-end learning of driving models with surround-view cameras and route planners. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 449–468. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_27

    Chapter  Google Scholar 

  28. Huang, W., Alem, L., Livingston, M.A.: Human factors in augmented reality environments. Springer, New York (2012). https://doi.org/10.1007/978-1-4614-4205-9

    Book  Google Scholar 

  29. Irie, G., et al.: Seeing through sounds: predicting visual semantic segmentation results from multichannel audio signals. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3961–3964 (2019)

    Google Scholar 

  30. Kim, H., Remaggi, L., Jackson, P.J., Fazi, F.M., Hilton, A.: 3D room geometry reconstruction using audio-visual sensors. In: International Conference on 3D Vision (3DV), pp. 621–629 (2017)

    Google Scholar 

  31. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  32. Klee, U., Gehrig, T., McDonough, J.: Kalman filters for time delay of arrival-based source localization. EURASIP J. Adv. Signal Process. 2006(1), 012378 (2006)

    Article  MathSciNet  Google Scholar 

  33. Li, D., Langlois, T.R., Zheng, C.: Scene-aware audio for 360\(^{\circ }\) videos. ACM Trans. Graph 37(4), 12 (2018)

    Google Scholar 

  34. Marchegiani, L., Posner, I.: Leveraging the urban soundscape: auditory perception for smart vehicles. In: IEEE International Conference on Robotics and Automation (ICRA) (2017)

    Google Scholar 

  35. McAnally, K.I., Martin, R.L.: Sound localization with head movement: implications for 3-d audio displays. Front. Neurosci. 8, 210 (2014)

    Article  Google Scholar 

  36. Mousavian, A., Pirsiavash, H., Košecká, J.: Joint semantic segmentation and depth estimation with deep convolutional networks. In: International Conference on 3D Vision (3DV), pp. 611–619 (2016)

    Google Scholar 

  37. Owens, A., Efros, A.A.: Audio-visual scene analysis with self-supervised multisensory features. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 639–658. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01231-1_39

    Chapter  Google Scholar 

  38. Owens, A., Isola, P., McDermott, J., Torralba, A., Adelson, E.H., Freeman, W.T.: Visually indicated sounds. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  39. Owens, A., Wu, J., McDermott, J.H., Freeman, W.T., Torralba, A.: Ambient sound provides supervision for visual learning. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 801–816. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_48

    Chapter  Google Scholar 

  40. Morgado, P., Vasconcelos, N., Langlois, T., Wang, O.: Self-supervised generation of spatial audio for 360 deg video. In: Neural Information Processing Systems (NIPS) (2018)

    Google Scholar 

  41. Rascon, C., Meza, I.: Localization of sound sources in robotics: a review. Robot. Auton. Syst. 96, 184–210 (2017)

    Article  Google Scholar 

  42. Rosenblum, L.D., Gordon, M.S., Jarquin, L.: Echolocating distance by moving and stationary listeners. Ecol. Psychol. 12(3), 181–206 (2000)

    Article  Google Scholar 

  43. Russell, B.C., Torralba, A., Murphy, K.P., Freeman, W.T.: LabelMe: a database and web-based tool for image annotation. Int. J. Comput. Vis. (IJCV) 77(1–3), 157–173 (2008)

    Article  Google Scholar 

  44. Salamon, J., Jacoby, C., Bello, J.P.: A dataset and taxonomy for urban sound research. In: ACM Multimedia (2014)

    Google Scholar 

  45. Saxena, A., Ng, A.Y.: Learning sound location from a single microphone. In: IEEE International Conference on Robotics and Automation (ICRA) (2009)

    Google Scholar 

  46. Senocak, A., Oh, T.H., Kim, J., Yang, M.H., So Kweon, I.: Learning to localize sound source in visual scenes. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  47. Simeoni, M.M.J.A., Kashani, S., Hurley, P., Vetterli, M.: DeepWave: a recurrent neural-network for real-time acoustic imaging. In: Neural Information Processing Systems (NIPS), p. 38 (2019)

    Google Scholar 

  48. Thurlow, W.R., Mangels, J.W., Runge, P.S.: Head movements during sound localizationtd. J. Acoust. Soc. Am. 42(2), 489–493 (1967)

    Article  Google Scholar 

  49. Tian, Y., Shi, J., Li, B., Duan, Z., Xu, C.: Audio-visual event localization in unconstrained videos. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11206, pp. 252–268. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01216-8_16

    Chapter  Google Scholar 

  50. Tiete, J., Domínguez, F., da Silva, B., Segers, L., Steenhaut, K., Touhafi, A.: SoundCompass: a distributed MEMS microphone array-based sensor for sound source localization. Sensors 14(2), 1918–1949 (2014)

    Article  Google Scholar 

  51. Urmson, C., et al.: Autonomous driving in urban environments: boss and the urban challenge. J. Field Robot. 25(8), 425–466 (2008). Special Issue on the 2007 DARPA Urban Challenge, Part I

    Google Scholar 

  52. Vandenhende, S., Georgoulis, S., Proesmans, M., Dai, D., Van Gool, L.: Revisiting multi-task learning in the deep learning era. arXiv (2020)

    Google Scholar 

  53. Wallach, H.: The role of head movements and vestibular and visual cues in sound localization. J. Exp. Psychol. 27(4), 339 (1940)

    Article  MathSciNet  Google Scholar 

  54. Ye, M., Zhang, Y., Yang, R., Manocha, D.: 3D reconstruction in the presence of glasses by acoustic and stereo fusion. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)

    Google Scholar 

  55. Zhao, H., Gan, C., Ma, W.C., Torralba, A.: The sound of motions. In: The IEEE International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  56. Zhao, H., Gan, C., Rouditchenko, A., Vondrick, C., McDermott, J., Torralba, A.: The sound of pixels. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 587–604. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_35

    Chapter  Google Scholar 

Download references

Acknowledgement

This work is funded by Toyota Motor Europe via the research project TRACE-Zurich. We would like to thank Danda Pani Paudel, Suryansh Kumar and Vaishakh Patil for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Balajee Vasudevan .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 67124 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vasudevan, A.B., Dai, D., Van Gool, L. (2020). Semantic Object Prediction and Spatial Sound Super-Resolution with Binaural Sounds. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12349. Springer, Cham. https://doi.org/10.1007/978-3-030-58548-8_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58548-8_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58547-1

  • Online ISBN: 978-3-030-58548-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics