Skip to main content

Deep Hough Transform for Semantic Line Detection

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Abstract

In this paper, we put forward a simple yet effective method to detect meaningful straight lines, a.k.a. semantic lines, in given scenes. Prior methods take line detection as a special case of object detection, while neglect the inherent characteristics of lines, leading to less efficient and suboptimal results. We propose a one-shot end-to-end framework by incorporating the classical Hough transform into deeply learned representations. By parameterizing lines with slopes and biases, we perform Hough transform to translate deep representations to the parametric space and then directly detect lines in the parametric space. More concretely, we aggregate features along candidate lines on the feature map plane and then assign the aggregated features to corresponding locations in the parametric domain. Consequently, the problem of detecting semantic lines in the spatial domain is transformed to spotting individual points in the parametric domain, making the post-processing steps, i.e. non-maximal suppression, more efficient. Furthermore, our method makes it easy to extract contextual line features, that are critical to accurate line detection. Experimental results on a public dataset demonstrate the advantages of our method over state-of-the-arts. Codes are available at https://mmcheng.net/dhtline/.

Q. Han and K. Zhao—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aggarwal, N., Karl, W.C.: Line detection in images through regularized hough transform. IEEE Trans. Image Process. 15(3), 582–591 (2006)

    Article  Google Scholar 

  2. Akinlar, C., Topal, C.: Edlines: a real-time line segment detector with a false detection control. Pattern Recogn. Lett. 32(13), 1633–1642 (2011)

    Article  Google Scholar 

  3. Ballard, D.: Generating the hough transform to detect arbitary shapes. Pattern Recogn. 13(2) (1981)

    Google Scholar 

  4. Borji, A., Cheng, M.M., Hou, Q., Jiang, H., Li, J.: Salient object detection: a survey. Comput. Vis. Media 5(2), 117–150 (2019). https://doi.org/10.1007/s41095-019-0149-9

    Article  Google Scholar 

  5. Burns, J.B., Hanson, A.R., Riseman, E.M.: Extracting straight lines. IEEE Trans. Pattern Anal. Mach. Intell. PAMI–8(4), 425–455 (1986)

    Article  Google Scholar 

  6. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. PAMI–8(6), 679–698 (1986)

    Article  Google Scholar 

  7. Caplin, S.: Art and Design in Photoshop. Elsevier/Focal (2008)

    Google Scholar 

  8. Chan, T., Yip, R.K.: Line detection algorithm. In: Proceedings of 13th International Conference on Pattern Recognition, vol. 2, pp. 126–130. IEEE (1996)

    Google Scholar 

  9. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 801–818 (2018)

    Google Scholar 

  10. Cheng, Z.Q., Li, J.X., Dai, Q., Wu, X., Hauptmann, A.G.: Learning spatial awareness to improve crowd counting. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 6152–6161 (2019)

    Google Scholar 

  11. Duda, R.O., Hart, P.E.: Use of the hough transformation to detect lines and curves in pictures. Technical report, Sri International Menlo Park Ca Artificial Intelligence Center (1971)

    Google Scholar 

  12. Etemadi, A.: Robust segmentation of edge data. In: 1992 International Conference on Image Processing and its Applications, pp. 311–314. IET (1992)

    Google Scholar 

  13. Fan, D.P., Lin, Z., Zhang, Z., Zhu, M., Cheng, M.M.: Rethinking RGB-D salient object detection: models, datasets, and large-scale benchmarks. IEEE TNNLS (2020)

    Google Scholar 

  14. Fan, D.-P., Zhai, Y., Borji, A., Yang, J., Shao, L.: BBS-Net: RGB-D salient object detection with a bifurcated backbone strategy network. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12357, pp. 275–292. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58610-2_17

    Chapter  Google Scholar 

  15. Fan, R., Cheng, M.M., Hou, Q., Mu, T.J., Wang, J., Hu, S.M.: S4Net: single stage salient-instance segmentation. Comput. Vis. Media 6(2), 191–204 (2020). https://doi.org/10.1007/s41095-020-0173-9

    Article  Google Scholar 

  16. Fernandes, L.A., Oliveira, M.M.: Real-time line detection through an improved hough transform voting scheme. Pattern Recogn. 41(1), 299–314 (2008)

    Article  Google Scholar 

  17. Gao, S.H., Cheng, M.M., Zhao, K., Zhang, X.Y., Yang, M.H., Torr, P.: Res2Net: a new multi-scale backbone architecture. IEEE Trans. Pattern Anal. Mach. Intell. 1 (2020)

    Google Scholar 

  18. Gao, S.H., Tan, Y.Q., Cheng, M.M., Lu, C., Chen, Y., Yan, S.: Highly efficient salient object detection with 100k parameters. In: European Conference on Computer Vision (ECCV) (2020)

    Google Scholar 

  19. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  20. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  21. Hou, Q., Cheng, M.M., Hu, X., Borji, A., Tu, Z., Torr, P.: Deeply supervised salient object detection with short connections. IEEE TPAMI 41(4), 815–828 (2019). https://doi.org/10.1109/TPAMI.2018.2815688

    Article  Google Scholar 

  22. Hough, P.V.: Method and means for recognizing complex patterns. US Patent 3,069,654 (1962)

    Google Scholar 

  23. Huang, Z., Wang, X., Huang, L., Huang, C., Wei, Y., Liu, W.: CCNet: criss-cross attention for semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 603–612 (2019)

    Google Scholar 

  24. Illingworth, J., Kittler, J.: The adaptive hough transform. IEEE Trans. Pattern Anal. Mach. Intell. PAMI–9(5), 690–698 (1987)

    Article  Google Scholar 

  25. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  26. Kiryati, N., Eldar, Y., Bruckstein, A.M.: A probabilistic hough transform. Pattern Recogn. 24(4), 303–316 (1991)

    Article  MathSciNet  Google Scholar 

  27. Krages, B.: Photography: The Art of Composition. Simon and Schuster, New York (2012)

    Google Scholar 

  28. Law, H., Deng, J.: CornerNet: detecting objects as paired keypoints. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 734–750 (2018)

    Google Scholar 

  29. Lee, J.T., Kim, H.U., Lee, C., Kim, C.S.: Semantic line detection and its applications. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3229–3237 (2017)

    Google Scholar 

  30. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  31. Liu, L., Chen, R., Wolf, L., Cohen-Or, D.: Optimizing photo composition. Comput. Graph. Forum 29(2), 469–478 (2010)

    Article  Google Scholar 

  32. Liu, W., Salzmann, M., Fua, P.: Context-aware crowd counting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5099–5108 (2019)

    Google Scholar 

  33. Liu, Y., et al.: Richer convolutional features for edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 41(8), 1939–1946 (2019). https://doi.org/10.1109/TPAMI.2018.2878849

    Article  Google Scholar 

  34. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, pp. 8024–8035 (2019)

    Google Scholar 

  35. Princen, J., Illingworth, J., Kittler, J.: A hierarchical approach to line extraction based on the hough transform. Comput. Vis. Graph. Image Process. 52(1), 57–77 (1990)

    Article  Google Scholar 

  36. Qi, C.R., Chen, X., Litany, O., Guibas, L.J.: ImvoteNet: boosting 3D object detection in point clouds with image votes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4404–4413 (2020)

    Google Scholar 

  37. Qi, C.R., Litany, O., He, K., Guibas, L.J.: Deep hough voting for 3D object detection in point clouds. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 9277–9286 (2019)

    Google Scholar 

  38. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  39. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)

    Google Scholar 

  40. Sobel, I.: An isotropic 3 \(\times \) 3 image gradient operator. Presentation at Stanford A.I. Project 1968, February 2014

    Google Scholar 

  41. Tan, Y.Q., Gao, S., Li, X.Y., Cheng, M.M., Ren, B.: Vecroad: Point-based iterative graph exploration for road graphs extraction. In: IEEE CVPR (2020)

    Google Scholar 

  42. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018)

    Google Scholar 

  43. Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015)

    Google Scholar 

  44. Yacoub, S.B., Jolion, J.M.: Hierarchical line extraction. IEE Proc.-Vis. Image Signal Process. 142(1), 7–14 (1995)

    Article  Google Scholar 

  45. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122 (2015)

  46. Zhang, Z., et al.: PPGnet: learning point-pair graph for line segment detection. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, 16–20 June 2019 (2019)

    Google Scholar 

  47. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2881–2890 (2017)

    Google Scholar 

Download references

Acknowledgements

This research was supported by Major Project for New Generation of AI under Grant No. 2018AAA0100400, NSFC (61922046), Tianjin Natural Science Foundation (18ZXZNGX00110), and the Fundamental Research Funds for the Central Universities (Nankai University: 63201169).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Ming Cheng .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2233 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Han, Q., Zhao, K., Xu, J., Cheng, MM. (2020). Deep Hough Transform for Semantic Line Detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12354. Springer, Cham. https://doi.org/10.1007/978-3-030-58545-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58545-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58544-0

  • Online ISBN: 978-3-030-58545-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics