Skip to main content

Weakly Supervised 3D Human Pose and Shape Reconstruction with Normalizing Flows

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12351))

Included in the following conference series:

Abstract

Monocular 3D human pose and shape estimation is challenging due to the many degrees of freedom of the human body and the difficulty to acquire training data for large-scale supervised learning in complex visual scenes. In this paper we present practical semi-supervised and self-supervised models that support training and good generalization in real-world images and video. Our formulation is based on kinematic latent normalizing flow representations and dynamics, as well as differentiable, semantic body part alignment loss functions that support self-supervised learning. In extensive experiments using 3D motion capture datasets like CMU, Human3.6M, 3DPW, or AMASS, as well as image repositories like COCO, we show that the proposed methods outperform the state of the art, supporting the practical construction of an accurate family of models based on large-scale training with diverse and incompletely labeled image and video data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We have also considered quaternions, but our experiments showed these to be inferior even to angle-axis (AA), by at least 10%.

  2. 2.

    Based on HMR’s Github repository, we identify a total of \(\approx \)27M trainable parameters. Our model has 6 stages, each with \(5 \times 7 \times 7 \times 128 \times 128\) parameters resulting in \(\approx \)24M trainable parameters.

References

  1. Arnab, A., Doersch, C., Zisserman, A.: Exploiting temporal context for 3D human pose estimation in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3395–3404. IEEE (2019)

    Google Scholar 

  2. Bogo, F., Kanazawa, A., Lassner, C., Gehler, P., Romero, J., Black, M.J.: Keep it SMPL: automatic estimation of 3D human pose and shape from a single image. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 561–578. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_34

    Chapter  Google Scholar 

  3. Cao, Z., Simon, T., Wei, S., Sheikh, Y.: Realtime multi-person 2D pose estimation using part affinity fields. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7291–7299. IEEE (2017)

    Google Scholar 

  4. Dinh, L., Krueger, D., Bengio, Y.: Nice: non-linear independent components estimation. arXiv preprint arXiv:1410.8516 (2014)

  5. Dinh, L., Sohl-Dickstein, J., Bengio, S.: Density estimation using real nvp. arXiv preprint arXiv:1605.08803 (2016)

  6. Doersch, C., Zisserman, A.: Sim2real transfer learning for 3D human pose estimation: motion to the rescue. In: Advances in Neural Information Processing Systems, pp. 12929–12941 (2019)

    Google Scholar 

  7. Germain, M., Gregor, K., Murray, I., Larochelle, H.: Made: masked autoencoder for distribution estimation. In: International Conference on Machine Learning, pp. 881–889 (2015)

    Google Scholar 

  8. Ionescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3.6M: large scale datasets and predictive methods for 3D human sensing in natural environments. IEEE Trans. Pattern Anal. Mach. Intell. 36(7), 1325–1339 (2014)

    Article  Google Scholar 

  9. Iskakov, K., Burkov, E., Lempitsky, V., Malkov, Y.: Learnable triangulation of human pose. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 7718–7727 (2019)

    Google Scholar 

  10. Jackson, A.S., Manafas, C., Tzimiropoulos, G.: 3D human body reconstruction from a single image via volumetric regression. In: Proceedings of the European Conference on Computer Vision (ECCV) (2018)

    Google Scholar 

  11. Joo, H., Simon, T., Sheikh, Y.: Total capture: a 3D deformation model for tracking faces, hands, and bodies. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 8320–8329 (2018)

    Google Scholar 

  12. Kanazawa, A., Black, M.J., Jacobs, D.W., Malik, J.: End-to-end recovery of human shape and pose. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7122–7131 (2018)

    Google Scholar 

  13. Kanazawa, A., Zhang, J.Y., Felsen, P., Malik, J.: Learning 3D human dynamics from video. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5614–5623 (2019)

    Google Scholar 

  14. Kato, H., Ushiku, Y., Harada, T.: Neural 3d mesh renderer. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3907–3916 (2018)

    Google Scholar 

  15. Kingma, D.P., Dhariwal, P.: Glow: generative flow with invertible 1 \(\times \) 1 convolutions. In: Advances in neural information processing systems, pp. 10215–10224 (2018)

    Google Scholar 

  16. Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow. In: Advances in neural information processing systems, pp. 4743–4751 (2016)

    Google Scholar 

  17. Kocabas, M., Athanasiou, N., Black, M.J.: Vibe: video inference for human body pose and shape estimation. arXiv preprint arXiv:1912.05656 (2019)

  18. Kolotouros, N., Pavlakos, G., Black, M.J., Daniilidis, K.: Learning to reconstruct 3D human pose and shape via model-fitting in the loop. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2252–2261 (2019)

    Google Scholar 

  19. Kolotouros, N., Pavlakos, G., Daniilidis, K.: Convolutional mesh regression for single-image human shape reconstruction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4501–4510 (2019)

    Google Scholar 

  20. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  21. Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: a skinned multi-person linear model. ACM Trans. Graph. (TOG) 34(6), 1–16 (2015)

    Article  Google Scholar 

  22. Loper, M.M., Black, M.J.: OpenDR: an approximate differentiable renderer. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 154–169. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10584-0_11

    Chapter  Google Scholar 

  23. Mahmood, N., Ghorbani, N., Troje, N.F., Pons-Moll, G., Black, M.J.: Amass: archive of motion capture as surface shapes. arXiv preprint arXiv:1904.03278 (2019)

  24. von Marcard, T., Henschel, R., Black, M., Rosenhahn, B., Pons-Moll, G.: Recovering accurate 3D human pose in the wild using imus and a moving camera. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 601–617 (2018)

    Google Scholar 

  25. Martinez, J., Hossain, R., Romero, J., Little, J.J.: A simple yet effective baseline for 3d human pose estimation. In: ICCV (2017)

    Google Scholar 

  26. Mehta, D., et al.: Vnect: real-time 3D human pose estimation with a single rgb camera. ACM Trans. Graph. (TOG) 36(4), 1–14 (2017)

    Article  Google Scholar 

  27. Omran, M., Lassner, C., Pons-Moll, G., Gehler, P.V., Schiele, B.: Neural body fitting: unifying deep learning and model-based human pose and shape estimation. In: 2018 international conference on 3D vision (3DV), pp. 484–494 IEEE (2018)

    Google Scholar 

  28. Papamakarios, G., Pavlakou, T., Murray, I.: Masked autoregressive flow for density estimation. In: Advances in Neural Information Processing Systems, pp. 2338–2347 (2017)

    Google Scholar 

  29. Pavlakos, G., et al.: Expressive body capture: 3d hands, face, and body from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 10975–10985. IEEE (2019)

    Google Scholar 

  30. Pavlakos, G., Zhou, X., Derpanis, K.G., Daniilidis, K.: Coarse-to-fine volumetric prediction for single-image 3D human pose. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7025–7034 IEEE (2017)

    Google Scholar 

  31. Pavlakos, G., Zhu, L., Zhou, X., Daniilidis, K.: Learning to estimate 3D human pose and shape from a single color image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 459–468. IEEE (2018)

    Google Scholar 

  32. Popa, A., Zanfir, M., Sminchisescu, C.: Deep multitask architecture for integrated 2D and 3D human sensing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6289–6298. IEEE (2017)

    Google Scholar 

  33. Rezende, D.J., Mohamed, S.: Variational inference with normalizing flows. arXiv preprint arXiv:1505.05770 (2015)

  34. Rhodin, H., Robertini, N., Richardt, C., Seidel, H.P., Theobalt, C.: A versatile scene model with differentiable visibility applied to generative pose estimation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 765–773 (2015)

    Google Scholar 

  35. Rogez, G., Schmid, C.: Mocap-guided data augmentation for 3D pose estimation in the wild. In: Advances in neural information processing systems, pp. 3108–3116 (2016)

    Google Scholar 

  36. Sun, Y., Ye, Y., Liu, W., Gao, W., Fu, Y., Mei, T.: Human mesh recovery from monocular images via a skeleton-disentangled representation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5349–5358 (2019)

    Google Scholar 

  37. Tekin, B., Marquez Neila, P., Salzmann, M., Fua, P.: Learning to fuse 2D and 3D image cues for monocular body pose estimation. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 3941–3950 (2017)

    Google Scholar 

  38. Tung, H.Y., Tung, H.W., Yumer, E., Fragkiadaki, K.: Self-supervised learning of motion capture. In: Advances in Neural Information Processing Systems, pp. 5236–5246 (2017)

    Google Scholar 

  39. Varol, G., et al.: BodyNet: volumetric inference of 3D human body shapes. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 20–36 (2018)

    Google Scholar 

  40. Wei, S.E., Ramakrishna, V., Kanade, T., Sheikh, Y.: Convolutional pose machines. In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp. 4724–4732. IEEE (2016)

    Google Scholar 

  41. Xu, H., Bazavan, E.G., Zanfir, A., Freeman, W.T., Sukthankar, R., Sminchisescu, C.: Ghum & ghuml: generative 3D human shape and articulated pose models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6184–6193 (2020)

    Google Scholar 

  42. Xu, Y., Zhu, S.C., Tung, T.: Denserac: joint 3D pose and shape estimation by dense render-and-compare. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 7760–7770. IEEE (2019)

    Google Scholar 

  43. Yang, W., Ouyang, W., Wang, X., Ren, J., Li, H., Wang, X.: 3D human pose estimation in the wild by adversarial learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5255–5264. IEEE (2018)

    Google Scholar 

  44. Zanfir, A., Marinoiu, E., Sminchisescu, C.: Monocular 3d pose and shape estimation of multiple people in natural scenes-the importance of multiple scene constraints. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2148–2157. IEEE (2018)

    Google Scholar 

  45. Zhang, C., Pujades, S., Black, M.J., Pons-Moll, G.: Detailed, accurate, human shape estimation from clothed 3D scan sequences. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4191–4200. IEEE(2017)

    Google Scholar 

  46. Zhou, X., Huang, Q., Sun, X., Xue, X., Wei, Y.: Towards 3D human pose estimation in the wild: a weakly-supervised approach. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 398–407. IEEE (2017)

    Google Scholar 

  47. Zhou, Y., Barnes, C., Lu, J., Yang, J., Li, H.: On the continuity of rotation representations in neural networks. arXiv preprint arXiv:1812.07035 (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduard Gabriel Bazavan .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 306 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zanfir, A., Bazavan, E.G., Xu, H., Freeman, W.T., Sukthankar, R., Sminchisescu, C. (2020). Weakly Supervised 3D Human Pose and Shape Reconstruction with Normalizing Flows. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12351. Springer, Cham. https://doi.org/10.1007/978-3-030-58539-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58539-6_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58538-9

  • Online ISBN: 978-3-030-58539-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics