Skip to main content

Modeling the Effects of Windshield Refraction for Camera Calibration

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12351))

Included in the following conference series:

Abstract

In this paper, we study the effects of windshield refraction for autonomous driving applications. These distortion effects are surprisingly large and can not be explained by traditional camera models. Instead of using a generalized camera approach, we propose a novel approach to jointly optimize a traditional camera model, and a mathematical representation of the windshield’s surface. First, using the laws of geometric optics, the refraction is modeled using a local spherical approximation to the windshield’s geometry. Next, a spline-based model is proposed as a refinement to better adapt to deviations from the ideal shape and manufacturing variations. By jointly optimizing refraction and camera parameters, the projection error can be significantly reduced. The proposed models are validated on real windshield observations and custom setups to compare recordings with and without windshield, with accurate laser scan measurements as 3D ground truth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agarwal, S., Mierle, K., Others: Ceres solver. http://ceres-solver.org

  2. Agrawal, A., Ramalingam, S., Taguchi, Y., Chari, V.: A theory of multilayer flat refractive geometry. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3346–3353. IEEE (2012) (2012)

    Google Scholar 

  3. Chari, V., Sturm, P.: Multiple-view geometry of the refractive plane. In: 20th British Machine Vision Conference, pp. 1–11 (2009). In BMVA

    Google Scholar 

  4. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  5. Gregson, J., Krimerman, M., Hullin, M.B., Heidrich, W.: Stochastic tomography and its applications in 3D imaging of mixing fluids. ACM Trans. Graph. (Proc. SIGGRAPH 2012) 31(4), 52:1–52:10 (2012)

    Google Scholar 

  6. Grossberg, M.D., Nayar, S.K.: The raxel imaging model and ray-based calibration. Int. J. Comput. Vis. 61(2), 119–137 (2005)

    Article  Google Scholar 

  7. Hanel, A., Hoegner, L., Stilla, U.: Towards the influence of a car windshield on depth calculation with a stereo camera system. In: ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B5, pp. 461–468 (2016)

    Google Scholar 

  8. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, Second edn. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  9. Huber, P.J.: Robust Statistic. In: Lovric, M. (ed.) International Encyclopedia of Statistical Science, pp. 1248-1251. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-04898-2_594

  10. Kukelova, Z., Bujnak, M., Pajdla, T.: Real-time solution to the absolute pose problem with unknown radial distortion and focal length. In: Proceedings of the 2013 IEEE International Conference on Computer Vision (ICCV 2013), Washington, DC, USA, pp. 2816–2823 (2013)

    Google Scholar 

  11. Kunz, C., Singh, H.: Hemispherical refraction and camera calibration in underwater vision. In: OCEANS2008, pp. 1–7 (2008)

    Google Scholar 

  12. Miraldo, P., Araujo, H.: Calibration of smooth camera models. IEEE Trans. Pattern Anal. Mach. Intell. 35(9), 2091–2103 (2013)

    Article  Google Scholar 

  13. Narasimhan, S., Nayar, S., Sun, B., Koppal, S.: Structured light in scattering media. In: Proceedings of ICCV, pp. 420–427 (2005)

    Google Scholar 

  14. Nishimura, M., Nobuhara, S., Matsuyama, T., Shimizu, S., Fujii, K.: A linear generalized camera calibration from three intersecting reference planes. In: Proceedings of ICCV, pp. 2354–2362 (2015)

    Google Scholar 

  15. Pável, S., Sándor, C., Csató, L.: Distortion estimation through explicit modeling of the refractive surface. In: Tetko, I.V., Kůrková, V., Karpov, P., Theis, F. (eds.) ICANN 2019. LNCS, vol. 11729, pp. 17–28. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30508-6_2

    Chapter  Google Scholar 

  16. Pedersen, M., Bengtson, S.H., Gade, R., Madsen, N., Moeslund, T.B.: Camera calibration for underwater 3D reconstruction based on ray tracing using Snell’s law. In: CVPR Workshops (CVPRW), pp. 1410–1417 (2018)

    Google Scholar 

  17. Ramalingam, S., Lodha, S., Sturm, P.: A generic structure-from-motion framework. Comput. Vis. Image Understand. 103, 218–228 (2006)

    Article  Google Scholar 

  18. Ramalingam, S., Sturm, P., Lodha, S.: Towards complete generic camera calibration. IEEE Conference on Computer Vision and Pattern Recognition, San Diego, USA, pp. 1093–1098 (2005)

    Google Scholar 

  19. Rousseeuw, P.J., Croux, C.: Alternatives to the median absolute deviation. J. Am. Stat. Assoc. 88(424), 1273–1283 (1993)

    Article  MathSciNet  Google Scholar 

  20. Sturm, P., Ramalingam, S.: A generic concept for camera calibration. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3022, pp. 1–13. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24671-8_1

    Chapter  Google Scholar 

  21. Sturm, P., Ramalingam, S., Tardif, J.P., Gasparini, S., Barreto, J.: Camera models and fundamental concepts used in geometric computer vision. Found. Trends ®Comput. Graph. Vis. 6(1–2), 1–183 (2011)

    Google Scholar 

  22. Trifonov, B., Bradley, D., Heidrich, W.: Tomographic reconstruction of transparent objects. In: Eurographics Conference on Rendering Techniques (2006)

    Google Scholar 

  23. Wikipedia: False position method – Wikipedia, the free encyclopedia (2018). https://en.wikipedia.org/wiki/False_position_method

Download references

Acknowledgement

This work was supported by the TRACE project with Toyota Motors Europe (TME).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Verbiest .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 528 KB)

Supplementary material 2 (pdf 4953 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Verbiest, F., Proesmans, M., Van Gool, L. (2020). Modeling the Effects of Windshield Refraction for Camera Calibration. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12351. Springer, Cham. https://doi.org/10.1007/978-3-030-58539-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58539-6_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58538-9

  • Online ISBN: 978-3-030-58539-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics