Skip to main content

Regularized Loss for Weakly Supervised Single Class Semantic Segmentation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12374))

Included in the following conference series:

Abstract

Fully supervised semantic segmentation is highly successful, but obtaining dense ground truth is expensive. Thus there is an increasing interest in weakly supervised approaches. We propose a new weakly supervised method for training CNNs to segment an object of a single class of interest. Instead of ground truth, we guide training with a regularized loss function. Regularized loss models prior knowledge about the likely object shape properties and thus guides segmentation towards the more plausible shapes. Training CNNs with regularized loss is difficult. We develop an annealing strategy that is crucial for successful training. The advantage of our method is simplicity: we use standard CNN architectures and intuitive and computationally efficient loss function. Furthermore, we apply the same loss function for any task/dataset, without any tailoring. We first evaluate our approach for salient object segmentation and co-segmentation. These tasks naturally involve one object class of interest. In some cases, our results are only a few points of standard performance measure behind those obtained training the same CNN with full supervision, and state-of-the art results in weakly supervised setting. Then we adapt our approach to weakly supervised multi-class semantic segmentation and obtain state-of-the-art results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In the context of CNNs, regularization is a term often used to refer to norm regularization on network weights  [12], or other techniques to prevent overfitting. In this work, regularized loss refers to the loss function on the output of CNN.

  2. 2.

    https://github.com/morduspordus/SingleClassRL.

  3. 3.

    Note that our volumetric prior is actually defined on batches of images. However for the simplicity of notation, we write \( L_{v}(\textit{\textbf{x}})\) in this equation

References

  1. Ahn, J., Kwak, S.: Learning pixel-level semantic affinity with image-level supervision for weakly supervised semantic segmentation. In: Conference on Computer Vision and Pattern Recognition, pp. 4981–4990 (2018)

    Google Scholar 

  2. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1222–1239 (2001)

    Article  Google Scholar 

  3. Boykov, Y., Kolmogorov, V.: Computing geodesics and minimal surfaces via graph cuts. In: 9th IEEE International Conference on Computer Vision (ICCV 2003), 14–17 October 2003, Nice, France, pp. 26–33 (2003)

    Google Scholar 

  4. Chen, L., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Semantic image segmentation with deep convolutional nets and fully connected CRFs. In: International Conference on Learning Research (2015)

    Google Scholar 

  5. Chen, L., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2018)

    Article  Google Scholar 

  6. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49

    Chapter  Google Scholar 

  7. Dai, J., He, K., Sun, J.: Boxsup: exploiting bounding boxes to supervise convolutional networks for semantic segmentation. In: International Conference on Computer Vision, pp. 1635–1643 (2015)

    Google Scholar 

  8. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR 2009 (2009)

    Google Scholar 

  9. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL visual object classes (VOC) challenge. Int. J. Comput. Vision 88(2), 303–338 (2010)

    Article  Google Scholar 

  10. Faktor, A., Irani, M.: Co-segmentation by composition. In: International Conference on Computer Vision, pp. 1297–1304 (2013)

    Google Scholar 

  11. Farabet, C., Couprie, C., Najman, L., LeCun, Y.: Learning hierarchical features for scene labeling. IEEE Trans. Pattern Anal. Mach. Intell. (2013). (in press)

    Google Scholar 

  12. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    Google Scholar 

  13. Gorelick, L., Veksler, O., Boykov, Y., Nieuwenhuis, C.: Convexity shape prior for segmentation. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 675–690. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_44

    Chapter  Google Scholar 

  14. Hsu, K.J., Lin, Y.Y., Chuang, Y.Y.: Co-attention CNNs for unsupervised object co-segmentation. In: IJCAI, pp. 748–756 (2018)

    Google Scholar 

  15. Khoreva, A., Benenson, R., Hosang, J.H., Hein, M., Schiele, B.: Simple does it: weakly supervised instance and semantic segmentation. In: Conference on Computer Vision and Pattern Recognition, pp. 1665–1674 (2017)

    Google Scholar 

  16. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  17. Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  18. Kolesnikov, A., Lampert, C.H.: Seed, expand and constrain: three principles for weakly-supervised image segmentation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 695–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_42

    Chapter  Google Scholar 

  19. Krähenbühl, P., Koltun, V.: Efficient inference in fully connected CRFs with gaussian edge potentials. In: Neural Information Processing Systems, pp. 109–117 (2011)

    Google Scholar 

  20. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Neural Information Processing Systems (2012)

    Google Scholar 

  21. Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields. In: International Conference on Machine Learning (2001)

    Google Scholar 

  22. LeCun, Y., et al.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), 541–551 (1989)

    Article  Google Scholar 

  23. Lee, J., Kim, E., Lee, S., Lee, J., Yoon, S.: Ficklenet: weakly and semi-supervised semantic image segmentation using stochastic inference. In: Conference on Computer Vision and Pattern Recognition, pp. 5267–5276 (2019)

    Google Scholar 

  24. Li, B., Sun, Z., Li, Q., Wu, Y., Hu, A.: Group-wise deep object co-segmentation with co-attention recurrent neural network. In: International Conference on Computer Vision, October 2019

    Google Scholar 

  25. Li, S.: Markov Random Field Modeling in Computer Vision. Springer, London (1995). https://doi.org/10.1007/978-4-431-66933-3

    Book  Google Scholar 

  26. Lin, D., Dai, J., Jia, J., He, K., Sun, J.: Scribblesup: scribble-supervised convolutional networks for semantic segmentation. In: Conference on Computer Vision and Pattern Recognition, pp. 3159–3167 (2016)

    Google Scholar 

  27. Liu, T., Sun, J., Zheng, N.N., Tang, X., Shum, H.Y.: Learning to detect a salient object. In: Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2007)

    Google Scholar 

  28. Nguyen, T., et al.: Deepusps: deep robust unsupervised saliency prediction via self-supervision. In: Advances in Neural Information Processing Systems, pp. 204–214 (2019)

    Google Scholar 

  29. Papandreou, G., Chen, L.C., Murphy, K.P., Yuille, A.L.: Weakly and semi supervised learning of a deep convolutional network for semantic image segmentation. In: International Conference on Computer Vision, pp. 1742–1750 (2015)

    Google Scholar 

  30. Pinheiro, P.H.O., Collobert, R.: From image-level to pixel-level labeling with convolutional networks. In: Conference on Computer Vision and Pattern Recognition, pp. 1713–1721 (2015)

    Google Scholar 

  31. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention, pp. 234–241 (2015)

    Google Scholar 

  32. Rother, C., Minka, T., Blake, A., Kolmogorov, V.: Cosegmentation of image pairs by histogram matching-incorporating a global constraint into MRFs. In: Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 993–1000 (2006)

    Google Scholar 

  33. Sandler, M., Howard, A.G., Zhu, M., Zhmoginov, A., Chen, L.: Mobilenetv 2: inverted residuals and linear bottlenecks. In: Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

    Google Scholar 

  34. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  35. Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation. Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2017)

    Article  Google Scholar 

  36. Shen, T., Lin, G., Liu, L., Shen, C., Reid, I.D.: Weakly supervised semantic segmentation based on co-segmentation. In: BMVC (2017)

    Google Scholar 

  37. Shen, T., Lin, G., Shen, C., Reid, I.: Bootstrapping the performance of webly supervised semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1363–1371 (2018)

    Google Scholar 

  38. Shimoda, W., Yanai, K.: Self-supervised difference detection for weakly-supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5208–5217 (2019)

    Google Scholar 

  39. Takikawa, T., Acuna, D., Jampani, V., Fidler, S.: Gated-SCNN: gated shape CNNs for semantic segmentation. In: International Conference on Computer Vision (2019)

    Google Scholar 

  40. Tang, M., Djelouah, A., Perazzi, F., Boykov, Y., Schroers, C.: Normalized cut loss for weakly-supervised CNN segmentation. In: Conference on Computer Vision and Pattern Recognition, pp. 1818–1827 (2018)

    Google Scholar 

  41. Tang, M., Perazzi, F., Djelouah, A., Ayed, I.B., Schroers, C., Boykov, Y.: On regularized losses for weakly-supervised CNN segmentation. In: European Conference on Computer Vision. pp. 524–540 (2018)

    Google Scholar 

  42. Vedaldi, A.: Cats and dogs. In: Conference on Computer Vision and Pattern Recognition (2012)

    Google Scholar 

  43. Veksler, O.: Efficient graph cut optimization for full CRFs with quantized edges. IEEE Trans. Pattern Anal. Mach. Intell. 42(4), 1005–1012 (2020)

    Article  Google Scholar 

  44. Vernaza, P., Chandraker, M.: Learning random-walk label propagation for weakly-supervised semantic segmentation. In: Conference on Computer Vision and Pattern Recognition, pp. 2953–2961 (2017)

    Google Scholar 

  45. Vicente, S., Kolmogorov, V., Rother, C.: Graph cut based image segmentation with connectivity priors. In: Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)

    Google Scholar 

  46. Vogiatzis, G., Torr, P., Cipolla, R.: Multi-view stereo via volumetric graph-cuts. In: Conference on Computer Vision and Pattern Recognition, pp. II: 391–398 (2005)

    Google Scholar 

  47. Wang, X., You, S., Li, X., Ma, H.: Weakly-supervised semantic segmentation by iteratively mining common object features. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1354–1362 (2018)

    Google Scholar 

  48. Wei, Y., Xiao, H., Shi, H., Jie, Z., Feng, J., Huang, T.S.: Revisiting dilated convolution: a simple approach for weakly-and semi-supervised semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7268–7277 (2018)

    Google Scholar 

  49. Wu, H., Zhang, J., Huang, K., Liang, K., Yu, Y.: Fastfcn: Rethinking dilated convolution in the backbone for semantic segmentation. CoRR abs/1903.11816 (2019)

    Google Scholar 

  50. Xie, S., Girshick, R.B., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: Conference on Computer Vision and Pattern Recognition, pp. 5987–5995 (2017)

    Google Scholar 

  51. Xu, J., Schwing, A.G., Urtasun, R.: Learning to segment under various forms of weak supervision. In: Conference on Computer Vision and Pattern Recognition, pp. 3781–3790 (2015)

    Google Scholar 

  52. Yan, Q., Xu, L., Shi, J., Jia, J.: Hierarchical saliency detection. In: Conference on Computer Vision and Pattern Recognition, pp. 1155–1162. IEEE (2013)

    Google Scholar 

  53. Yang, C., Zhang, L., Lu, H., Ruan, X., Yang, M.H.: Saliency detection via graph-based manifold ranking. In: Conference on Computer Vision and Pattern Recognition, pp. 3166–3173. IEEE (2013)

    Google Scholar 

  54. Zeng, Y., Zhuge, Y., Lu, H., Zhang, L.: Joint learning of saliency detection and weakly supervised semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 7223–7233 (2019)

    Google Scholar 

  55. Zhang, D., Han, J., Zhang, Y.: Supervision by fusion: Towards unsupervised learning of deep salient object detector. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4048–4056 (2017)

    Google Scholar 

  56. Zhang, J., Zhang, T., Dai, Y., Harandi, M., Hartley, R.: Deep unsupervised saliency detection: A multiple noisy labeling perspective. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9029–9038 (2018)

    Google Scholar 

  57. Zheng, S., Jayasumana, S., Romera-Paredes, B., Vineet, V., Su, Z., Du, D., Huang, C., Torr, P.: Conditional random fields as recurrent neural networks. In: International Conference on Computer Vision, pp. 1529–1537 (2015)

    Google Scholar 

  58. Zhou, B., Khosla, A., Lapedriza, À., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: Conference on Computer Vision and Pattern Recognition, pp. 2921–2929 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Veksler .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 166 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Veksler, O. (2020). Regularized Loss for Weakly Supervised Single Class Semantic Segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12374. Springer, Cham. https://doi.org/10.1007/978-3-030-58526-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58526-6_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58525-9

  • Online ISBN: 978-3-030-58526-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics