Skip to main content

Fiber Reinforced Concrete After Elevated Temperatures: Techniques of Characterization

  • Conference paper
  • First Online:
Fibre Reinforced Concrete: Improvements and Innovations (BEFIB 2020)

Part of the book series: RILEM Bookseries ((RILEM,volume 30))

Included in the following conference series:

Abstract

The mechanical properties of fiber reinforced concrete (FRC) are negatively affected when subjected to elevated temperatures. The main concern is regarding its post-crack tensile strength, which can be severely impaired at temperatures above 300 °C. In this composite, the mechanical characterization is constantly performed by means of bending tests of prismatic specimens, as recommended by EN 14651. However, due to limiting aspects, alternative methodologies have been used for the characterization of FRC, among which are the DEWS (Double Edge Wedge Splitting) and the Double Punch tests. In this context, the present study compares the methodologies for evaluating the mechanical behavior of FRC after elevated temperatures, discussing and emphasizing its advantages and limitations. The Double Punch test does not show satisfactory response as a consequence of the degradation suffered by the sample and the puncture interaction induced by the test. On the other hand, the indirect tensile DEWS test shows that it is capable of characterizing the FRC even after exposure to elevated temperatures. Although the post-crack response of the composite varies according to the method adopted, the post-crack tensile strength in the service limit state (SLS) and ultimate limit state (ULS) are considerably reduced when compared with the ambient temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fédération Internationale du Béton – FIB. ‘Fib Model Code for Concrete Structures 2010’. Switzerland (2013)

    Google Scholar 

  2. Liao, L., et al.: Design of FRC tunnel segments considering the ductility requirements of the model code 2010. Tunn Undergr Sp Tech 47, 200–210 (2015)

    Article  Google Scholar 

  3. Silva, C.L.: Projeto de estruturas de concreto em situação de incêndio conforme ABNT NBR 15200:2012 (Blucher 2012)

    Google Scholar 

  4. Yemark, N., et al.: Influence of steel and/or polypropylene fibers on the behavior of concrete at high temperature: spalling, transfer and mechanical properties. Constr. Build. Mater. 132, 240–250 (2017)

    Article  Google Scholar 

  5. Dehn, F., Herrmann, A.: ‘Concreto reforçado com fibras de aço em situação de incêndio – requisitos normativos, pré-normativos e códigos-modelo’. Concreto & Construções, 87 (2017)

    Google Scholar 

  6. Rambo, D.A.S., et al.: Study of temperature effect on macro-synthetic fiber reinforced concretes by means of Barcelona tests: an approach focused on tunnels assessment. Constr. Build. Mater. 158, 443–453 (2018)

    Article  Google Scholar 

  7. Tai, Y.S., et al.: Mechanical properties of steel fiber reinforced reactive powder concrete following exposure to high temperature reaching 800 & #xB0;C. Nuclear Eng. Design 241, 2416–2424 (2011)

    Article  Google Scholar 

  8. Poon, C.S., et al.: ‘Compressive behavior of fiber reinforced high-performance concrete subjected to elevated temperatures’. Cement and Concrete Research, 34, 2215–2222 (2004)

    Google Scholar 

  9. Serafini, et al.: Influence of fire on temperature gradient and physical-mechanical properties of macro-synthetic fiber reinforced concrete for tunnel linings. Constr. Build. Mater. 214, 254–268 (2019)

    Article  Google Scholar 

  10. Kalifa, P.: High temperature behaviour of HPC with polypropylene fibres: from spalling to microstructure. Cement Concrete Res. 31, 1487–1499 (2001)

    Article  Google Scholar 

  11. Fédération Internationale Du Béton - fib Bulletin 46 ‘Fire design of concrete structures - structural behaviour and assessment’ State-of-art report, Lausanne, Switzerland 2008

    Google Scholar 

  12. Choumanidis, D., et al.: Barcelona test for the evaluation of the mechanical properties of single and hybrid FRC, exposed to elevated temperature. Constr. Build. Mater. 138, 296–305 (2017)

    Article  Google Scholar 

  13. UNE 83515: 2010 ‘Hormigones con fibras. Determinación de la resistencia a fisuración, tenacidad y resistencia residual a tracción. Método Barcelona. The Spanish Association for Standardisation’, Madrid 2010

    Google Scholar 

  14. di Prisco, M., Ferrara, L., Lamperti, M.G.L.: Double edge wedge splitting (DEWS): an indirect tension test to identify post-cracking behaviour of fibre reinforced cementitious composites. Mater. Struct. 46(11), 1893–1918 (2013). https://doi.org/10.1617/s11527-013-0028-2

    Article  Google Scholar 

  15. Xing, Z., et al.: Aggregate’s influence on thermophysical concrete properties at elevated temperature. Constr. Build. Mater. 95, 18–28 (2015)

    Article  Google Scholar 

  16. Zheng, W., Li, H., Wang, Y.: Compressive stress-strain relationship of steel fiber-reinforced reactive powder concrete after exposure to elevated temperatures. Constr. Build. Mater. 35, 931–940 (2012)

    Article  Google Scholar 

  17. Sukontasukkul, P., et al.: Post-crack (or post-peak) flexural response and toughness of fiber reinforced concrete after exposure to high temperature. Constr. Build. Mater. 24, 1967–1974 (2010)

    Article  Google Scholar 

  18. Abdallah, S., Fan, M., Cashell, K.A.: Pull-out behaviour of straight and hooked-end steel fibres under elevated temperatures. Cem. Concr. Res. 95, 132–140 (2017)

    Article  Google Scholar 

  19. Fernandes, B., Gil, A.M., Bolina, F.L., Tutikian, B.F.: Microstructure of concrete subjected to elevated temperatures: physico-chemical changes and analysis techniques. Ibracon Struct. Mater. J. 10, 838–863 (2017)

    Article  Google Scholar 

  20. Helal, J., Sofi, M., Mendis, P.: Non-destructive testing of concrete: a review of methods. Electr. J. Struct. Eng. 14, 97–105 (2015)

    Google Scholar 

  21. Monte, R., Toaldo, G.S., Figueiredo, A.D.: Avaliação da tenacidade de concretos reforçados com fibras através de ensaios com sistema aberto. Revista Matéria 19, 132–149 (2014)

    Article  Google Scholar 

  22. Standardization, E.C.F.: EN 14651: Test method for metallic fiber-reinforced concrete – Measuring the flexural tensile strength (limit of proportionality (LOP), residual, p. 15p. CEN, London (2007)

    Google Scholar 

  23. Serafini, R., et al.: Influence of fire exposure on the flexural behavior of macro-synthetic fiber reinforced concrete. In: 9th international conference on concrete under severe conditions-environment & loading, Porto Alegre 2019

    Google Scholar 

  24. Ma, Q., et al.: Mechanical properties of concrete at high temperature-a review. Constr. Build. Mater. 93, 371–383 (2015)

    Article  Google Scholar 

  25. Molins, C., Aguado, A., Saludes, S.: Double Punch Test to control the energy dissipation in tension of FRC (Barcelona test). Mater. Struct. 42, 415–425 (2008)

    Article  Google Scholar 

  26. Pujadas, P.: Caracterización y diseño del hormigón reforzado con fibras plásticas. Tesis Doctoral - Universitat Politècnica de Catalunya, Barcelona (2013)

    Google Scholar 

  27. Silva, C.L.: ‘Proposta de metodologia alternativa para controle de qualidade da aplicação estrutural do concreto projetado reforçado com fibras de aço’. Dissertação de Mestrado, São Paulo 2017

    Google Scholar 

  28. Kim, J., Lee, G.P., Moon, D.Y.: Evaluation of mechanical properties of steel-fibre reinforced concrete exposed to high temperatures by double-punch test. Constr. Build. Mater. 79, 182–191 (2015)

    Article  Google Scholar 

  29. Agra, R.R., et al.: ‘Avaliação dos efeitos do fogo na resistencia à tração residual do concreto reforçado com fibras de aço por meio do ensaio DEWS (Double Edge Wedge Splitting). In: 5th Iberian-Latin-American Congress On Fire Safety, Porto 2019

    Google Scholar 

  30. Serafini, R., et al.: Double edge wedge splitting test to characterize the post-cracking design parameters of fiber reinforced concrete subjected to high temperatures. J. Mater. Civ. Eng. (forthcoming). https://doi.org/10.1061/(ASCE)MT.1943-5533.0003701

Download references

Acknowledgements

The authors would like to thank the Institute for Technological Research (IPT) and its foundation (FIPT) for their financial and institutional support though the New Talents Program N.01/2017 and N.01/2018. The authors would also like to thank CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior). Antonio D. de Figueiredo would like to acknowledge the financial support of the National Council for Scientific and Technological Development - CNPq (Proc. Nº: 305055 / 2019-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronney Rodrigues Agra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 RILEM

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Agra, R.R., Serafini, R., de Figueiredo, A.D. (2021). Fiber Reinforced Concrete After Elevated Temperatures: Techniques of Characterization. In: Serna, P., Llano-Torre, A., Martí-Vargas, J.R., Navarro-Gregori, J. (eds) Fibre Reinforced Concrete: Improvements and Innovations. BEFIB 2020. RILEM Bookseries, vol 30. Springer, Cham. https://doi.org/10.1007/978-3-030-58482-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58482-5_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58481-8

  • Online ISBN: 978-3-030-58482-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics