Skip to main content

Perturbing Branching Heuristics in Constraint Solving

  • Conference paper
  • First Online:
Principles and Practice of Constraint Programming (CP 2020)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 12333))

  • 1382 Accesses

Abstract

Variable ordering heuristics are one of the key settings for an efficient constraint solver. During the last two decades, a considerable effort has been spent for designing dynamic heuristics that iteratively change the order of variables as search progresses. At the same time, restart and randomization methods have been devised for alleviating heavy-tailed phenomena that typically arise in backtrack search. Despite restart methods are now well-understood, choosing how and when to randomize a given heuristic remains an open issue in the design of modern solvers. In this paper, we present several conceptually simple perturbation strategies for incorporating random choices in constraint solving with restarts. The amount of perturbation is controlled and learned in a bandit-driven framework under various stationary and non-stationary exploration policies, during successive restarts. Our experimental evaluation shows significant performance improvements for the perturbed heuristics compared to their classic counterpart, establishing the need for incorporating perturbation in modern constraint solvers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See http://www.cril.univ-artois.fr/XCSP17.

  2. 2.

    See http://www.cril.fr/~lecoutre/#/softwares.

References

  1. Agrawal, S., Goyal, N.: Near-optimal regret bounds for Thompson Sampling. J. ACM 64(5), 30:1–30:24 (2017)

    Google Scholar 

  2. Audibert, J.Y., Bubeck, S.: Minimax policies for adversarial and stochastic bandits. In: COLT, Montreal, Canada, pp. 217–226 (2009)

    Google Scholar 

  3. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed bandit problem. Mach. Learn. 47(2), 235–256 (2002)

    Article  MATH  Google Scholar 

  4. Auer, P., Cesa-Bianchi, N., Freund, Y., Schapire, R.: The nonstochastic multiarmed bandit problem. SIAM J. Comput. 32(1), 48–77 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Balafrej, A., Bessiere, C., Paparrizou, A.: Multi-armed bandits for adaptive constraint propagation. In: Proceedings of IJCAI 2015, pp. 290–296 (2015)

    Google Scholar 

  6. van Beek, P.: Backtracking search algorithms. In: Handbook of Constraint Programming, Chap. 4, pp. 85–134. Elsevier (2006)

    Google Scholar 

  7. Bessière, C., Régin, J.-C.: MAC and combined heuristics: two reasons to forsake FC (and CBJ?) on hard problems. In: Freuder, E.C. (ed.) CP 1996. LNCS, vol. 1118, pp. 61–75. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61551-2_66

    Chapter  Google Scholar 

  8. Bessiere, C., Zanuttini, B., Fernandez, C.: Measuring search trees. In: Proceedings of ECAI 2004 Workshop on Modelling and Solving Problems with Constraints, pp. 31–40 (2004)

    Google Scholar 

  9. Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by weighting constraints. In: Proceedings of ECAI 2004, pp. 146–150 (2004)

    Google Scholar 

  10. Bubeck, S., Cesa-Bianchi, N.: Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems. Foundations and Trends in Machine Learning. Now Publishers (2012)

    Google Scholar 

  11. Gecode Team: Gecode: generic constraint development environment (2006). http://www.gecode.org

  12. Gomes, C., Selman, B., Crato, N., Kautz, H.: Heavy-tailed phenomena in satisfiability and constraint satisfaction problems. J. Autom. Reason. 24(1), 67–100 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gomes, C.P., Selman, B., Kautz, H.: Boosting combinatorial search through randomization. In: Proceedings of AAAI 1998, pp. 431–437 (1998)

    Google Scholar 

  14. Grimes, D., Wallace, R.J.: Sampling strategies and variable selection in weighted degree heuristics. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 831–838. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74970-7_61

    Chapter  Google Scholar 

  15. Habet, D., Terrioux, C.: Conflict history based branching heuristic for CSP solving. In: Proceedings of the 8th International Workshop on Combinations of Intelligent Methods and Applications (CIMA), Volos, Greece, November 2018

    Google Scholar 

  16. Haralick, R., Elliott, G.: Increasing tree search efficiency for constraint satisfaction problems. Artif. Intell. 14, 263–313 (1980)

    Article  Google Scholar 

  17. Harvey, W.D., Ginsberg, M.L.: Limited discrepancy search. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence, IJCAI 1995, vol. 1, pp. 607–613 (1995)

    Google Scholar 

  18. Hebrard, E.: Mistral, a constraint satisfaction library. Proc. Third Int. CSP Solver Competition 3(3), 31–39 (2008)

    Google Scholar 

  19. Hogg, T., Huberman, B.A., Williams, C.P.: Phase transitions and the search problem. Artif. Intell. 81(1), 1–15 (1996)

    Article  MathSciNet  Google Scholar 

  20. Lecoutre, C., Sais, L., Tabary, S., Vidal, V.: Recording and minimizing nogoods from restarts. J. Satisfiability, Boolean Model. Comput. (JSAT) 1, 147–167 (2007)

    Google Scholar 

  21. Loth, M., Sebag, M., Hamadi, Y., Schoenauer, M.: Bandit-based search for constraint programming. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 464–480. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40627-0_36

    Chapter  Google Scholar 

  22. Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of Las Vegas algorithms. Inf. Process. Lett. 47(4), 173–180 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mackworth, A.: On reading sketch maps. In: Proceedings of IJCAI 1977, pp. 598–606 (1977)

    Google Scholar 

  24. Merchez, S., Lecoutre, C., Boussemart, F.: AbsCon: a prototype to solve CSPs with abstraction. In: Proceedings of CP 2001, pp. 730–744 (2001)

    Google Scholar 

  25. Michel, L., Van Hentenryck, P.: Activity-based search for black-box constraint programming solvers. In: Beldiceanu, N., Jussien, N., Pinson, É. (eds.) CPAIOR 2012. LNCS, vol. 7298, pp. 228–243. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29828-8_15

    Chapter  Google Scholar 

  26. Pisinger, D., Ropke, S.: Large neighborhood search. In: Gendreau, M., Potvin, J.Y. (eds.) Handbook of Metaheuristics. International Series in Operations Research & Management Science, vol. 146, pp. 399–419. Springer, Boston (2010). https://doi.org/10.1007/978-1-4419-1665-5_13

    Chapter  Google Scholar 

  27. Prud’homme, C., Fages, J.G., Lorca, X.: Choco Solver Documentation. TASC, INRIA Rennes, LINA CNRS UMR 6241, COSLING S.A.S. (2016). http://www.choco-solver.org

  28. Sabin, D., Freuder, E.C.: Contradicting conventional wisdom in constraint satisfaction. In: Borning, A. (ed.) PPCP 1994. LNCS, vol. 874, pp. 10–20. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58601-6_86

    Chapter  Google Scholar 

  29. Selman, B., Kautz, H.A., Cohen, B.: Noise strategies for improving local search. In: Proceedings of AAAI 1994, pp. 337–343 (1994)

    Google Scholar 

  30. Selman, B., Levesque, H., Mitchell, D.: A new method for solving hard satisfiability problems. In: Proceedings of the Tenth National Conference on Artificial Intelligence, AAAI 1992, pp. 440–446. AAAI Press (1992). http://dl.acm.org/citation.cfm?id=1867135.1867203

  31. Sutton, R., Barto, A.G.: Reinforcement learning: an introduction 9, 1054 (1998)

    Google Scholar 

  32. Thompson, W.R.: On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. Biometrika 25(3–4), 285–294 (1933)

    Google Scholar 

  33. Walsh, T.: Search in a small world. In: Proceedings of IJCAI 1999, pp. 1172–1177 (1999)

    Google Scholar 

  34. Wattez, H., Koriche, F., Lecoutre, C., Paparrizou, A., Tabary, S.: Heuristiques de recherche: un bandit pour les gouverner toutes. In: 15es Journées Francophones de Programmation par Contraintes - JFPC 2019 (2019). https://hal.archives-ouvertes.fr/hal-02414288

  35. Wattez, H., Koriche, F., Lecoutre, C., Paparrizou, A., Tabary, S.: Learning variable ordering heuristics with multi-armed bandits and restarts. In: Proceedings of ECAI 2020 (2020). (To appear)

    Google Scholar 

  36. Wattez, H., Lecoutre, C., Paparrizou, A., Tabary, S.: Refining constraint weighting. In: Proceedings of ICTAI 2019, pp. 71–77 (2019)

    Google Scholar 

  37. Xia, W., Yap, R.H.C.: Learning robust search strategies using a bandit-based approach. In: Proceedings of AAAI 2018, pp. 6657–6665 (2018)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Frederic Koriche for his valuable advices on the Machine Learning aspects of the paper as well as the anonymous reviewers for their constructive remarks. This work has been partially supported by the project Emergence 2020 BAUTOM of INS2I and the project CPER Data from the region “Hauts-de-France”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasia Paparrizou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Paparrizou, A., Wattez, H. (2020). Perturbing Branching Heuristics in Constraint Solving. In: Simonis, H. (eds) Principles and Practice of Constraint Programming. CP 2020. Lecture Notes in Computer Science(), vol 12333. Springer, Cham. https://doi.org/10.1007/978-3-030-58475-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58475-7_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58474-0

  • Online ISBN: 978-3-030-58475-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics