Skip to main content

A User Experience Questionnaire for VR Locomotion: Formulation and Preliminary Evaluation

  • Conference paper
  • First Online:
Augmented Reality, Virtual Reality, and Computer Graphics (AVR 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12242))

Abstract

When evaluating virtual reality (VR) locomotion techniques, the user experience metrics that are used are usually either focused on specific experiential dimensions or based on non-standardised, subjective reporting. The field would benefit from a standard questionnaire for evaluating the general user experience of VR locomotion techniques. This paper presents a synthesised user experience questionnaire for VR locomotion, which is called the VR Locomotion Experience Questionnaire (VRLEQ). It comprises the Game Experience Questionnaire (GEQ) and the System Usability Scale (SUS) survey. The results of the VRLEQ’s application in a comparative, empirical study (\(n = 26\)) of three prevalent VR locomotion techniques are described. The questionnaire’s content validity is assessed at a preliminary level based on the correspondence between the questionnaire items and the qualitative results from the study’s semi-structured interviews. VRLEQ’s experiential dimensions’ scoring corresponded well with the semi-structured interview remarks and effectively captured the experiential qualities of each VR locomotion technique. The VRLEQ results facilitated and quantified comparisons between the techniques and enabled an understanding of how the techniques performed in relation to each other.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed, I., Harjunen, V., Jacucci, G., Hoggan, E., Ravaja, N., Spapé, M.M.: Reach out and touch me: effects of four distinct haptic technologies on affective touch in virtual reality. In: Proceedings of the 18th ACM International Conference on Multimodal Interaction, pp. 341–348. ACM (2016)

    Google Scholar 

  2. Albert, J., Sung, K.: User-centric classification of virtual reality locomotion. In: Proceedings of the 24th ACM Symposium on Virtual Reality Software and Technology, pp. 1–2 (2018)

    Google Scholar 

  3. Alumran, A., Hou, X.Y., Hurst, C.: Validity and reliability of instruments designed to measure factors influencing the overuse of antibiotics. J. Infection Public Health 5(3), 221–232 (2012)

    Article  Google Scholar 

  4. Apostolellis, P., Bowman, D.A.: Evaluating the effects of orchestrated, game-based learning in virtual environments for informal education. In: Proceedings of the 11th Conference on Advances in Computer Entertainment Technology, p. 4. ACM (2014)

    Google Scholar 

  5. Bangor, A., Kortum, P., Miller, J.: Determining what individual SUS scores mean: adding an adjective rating scale. J. Usability Stud. 4(3), 114–123 (2009)

    Google Scholar 

  6. Boletsis, C.: The new era of virtual reality locomotion: a systematic literature review of techniques and a proposed typology. Multimodal Technol. Interact. 1(4), 24:1–24:17 (2017)

    Google Scholar 

  7. Boletsis, C., Cedergren, J.E.: VR locomotion in the new era of virtual reality: an empirical comparison of prevalent techniques. In: Advances in Human-Computer Interaction 2019, pp. 7420781:1–7420781:15 (2019)

    Google Scholar 

  8. Borrego, A., Latorre, J., Llorens, R., Alcañiz, M., Noé, E.: Feasibility of a walking virtual reality system for rehabilitation: objective and subjective parameters. J. Neuroeng. Rehabil. 13(1), 68 (2016)

    Article  Google Scholar 

  9. Bowman, D., Kruijff, E., LaViola Jr., J.J., Poupyrev, I.P.: 3D User Interfaces: Theory and Practice, CourseSmart eTextbook. Addison-Wesley (2004)

    Google Scholar 

  10. Bozgeyikli, E., Raij, A., Katkoori, S., Dubey, R.: Locomotion in virtual reality for individuals with autism spectrum disorder. In: Proceedings of the Symposium on Spatial User Interaction, pp. 33–42. ACM (2016)

    Google Scholar 

  11. Bozgeyikli, E., Raij, A., Katkoori, S., Dubey, R.: Point & teleport locomotion technique for virtual reality. In: Proceedings of the Annual Symposium on Computer-Human Interaction in Play, pp. 205–216. ACM (2016)

    Google Scholar 

  12. Brooke, J.: SUS: a retrospective. J. Usability Stud. 8(2), 29–40 (2013)

    Google Scholar 

  13. Brooke, J., et al.: SUS-A quick and dirty usability scale. Usability Eval. Ind. 189(194), 4–7 (1996)

    Google Scholar 

  14. Bruder, G., Lubos, P., Steinicke, F.: Cognitive resource demands of redirected walking. IEEE Trans. Visual Comput. Graphics 21(4), 539–544 (2015)

    Article  Google Scholar 

  15. DeVon, H.A., et al.: A psychometric toolbox for testing validity and reliability. J. Nurs. Scholarsh. 39(2), 155–164 (2007)

    Article  Google Scholar 

  16. Grabowski, A., Jankowski, J.: Virtual reality-based pilot training for underground coal miners. Saf. Sci. 72, 310–314 (2015)

    Article  Google Scholar 

  17. Hale, K.S., Stanney, K.M.: Handbook of Virtual Environments: Design, Implementation, and Applications. CRC Press, Boca Raton (2014)

    Book  Google Scholar 

  18. Ijsselsteijn, W., De Kort, Y., Poels, K.: The game experience questionnaire. Technische Universiteit Eindhoven (2013)

    Google Scholar 

  19. Kennedy, R.S., Lane, N.E., Berbaum, K.S., Lilienthal, M.G.: Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. Int. J. Aviat. Psychol. 3(3), 203–220 (1993)

    Article  Google Scholar 

  20. Kizony, R., Weiss, P.L.T., Shahar, M., Rand, D.: Theragame: a home based virtual reality rehabilitation system. Int. J. Disabil. Hum. Dev. 5(3), 265–270 (2006)

    Article  Google Scholar 

  21. Kortum, P., Acemyan, C.Z.: How low can you go?: is the system usability scale range restricted? J. Usability Stud. 9(1), 14–24 (2013)

    Google Scholar 

  22. Kruijff, E., Riecke, B., Trekowski, C., Kitson, A.: Upper body leaning can affect forward self-motion perception in virtual environments. In: Proceedings of the 3rd ACM Symposium on Spatial User Interaction, pp. 103–112 (2015)

    Google Scholar 

  23. Langbehn, E., Eichler, T., Ghose, S., von Luck, K., Bruder, G., Steinicke, F.: Evaluation of an omnidirectional walking-in-place user interface with virtual locomotion speed scaled by forward leaning angle. In: Proceedings of the GI Workshop on Virtual and Augmented Reality (GI VR/AR), pp. 149–160 (2015)

    Google Scholar 

  24. Lee, G.A., Dünser, A., Kim, S., Billinghurst, M.: CityViewAR: a mobile outdoor AR application for city visualization. In: Proceedings of the IEEE International Symposium on Mixed and Augmented Reality, pp. 57–64. IEEE (2012)

    Google Scholar 

  25. Lee, G.A., Dunser, A., Nassani, A., Billinghurst, M.: Antarcticar: an outdoor AR experience of a virtual tour to antarctica. In: Proceedings of the IEEE International Symposium on Mixed and Augmented Reality-Arts, Media, and Humanities, pp. 29–38. IEEE (2013)

    Google Scholar 

  26. Lin, H.C.K., Hsieh, M.C., Wang, C.H., Sie, Z.Y., Chang, S.H.: Establishment and usability evaluation of an interactive AR learning system on conservation of fish. Turkish Online J. Educ. Technol. 10(4), 181–187 (2011)

    Google Scholar 

  27. Lloréns, R., Noé, E., Colomer, C., Alcañiz, M.: Effectiveness, usability, and cost-benefit of a virtual reality-based telerehabilitation program for balance recovery after stroke: A randomized controlled trial. Arch. Phys. Med. Rehabil. 96(3), 418–425 (2015)

    Article  Google Scholar 

  28. Meijer, F., Geudeke, B.L., Van den Broek, E.L.: Navigating through virtual environments: Visual realism improves spatial cognition. CyberPsychology Behav. 12(5), 517–521 (2009)

    Article  Google Scholar 

  29. Meldrum, D., Glennon, A., Herdman, S., Murray, D., McConn-Walsh, R.: Virtual reality rehabilitation of balance: assessment of the usability of the nintendo wii® fit plus. Disability Rehabil. Assist. Technol. 7(3), 205–210 (2012)

    Article  Google Scholar 

  30. Nabiyouni, M., Bowman, D.A.: An evaluation of the effects of hyper-natural components of interaction fidelity on locomotion performance in virtual reality. In: Proceedings of the 25th International Conference on Artificial Reality and Telexistence and 20th Eurographics Symposium on Virtual Environments, pp. 167–174. Eurographics Association (2015)

    Google Scholar 

  31. Nabiyouni, M., Saktheeswaran, A., Bowman, D.A., Karanth, A.: Comparing the performance of natural, semi-natural, and non-natural locomotion techniques in virtual reality. In: Proceedings of the IEEE Symposium on 3D User Interfaces, pp. 3–10. IEEE (2015)

    Google Scholar 

  32. Nabiyouni, M., Scerbo, S., DeVito, V., Smolen, S., Starrin, P., Bowman, D.A.: Design and evaluation of a visual acclimation aid for a semi-natural locomotion device. In: 2015 IEEE Symposium on 3D User Interfaces (3DUI), pp. 11–14. IEEE (2015)

    Google Scholar 

  33. Nacke, L., Lindley, C.: Boredom, immersion, flow: a pilot study investigating player experience. In: Proceedings of the IADIS International Conference Gaming 2008: Design for Engaging Experience and Social Interaction, pp. 1–5. IADIS Press (2008)

    Google Scholar 

  34. Nacke, L., Lindley, C.A.: Flow and immersion in first-person shooters: measuring the player’s gameplay experience. In: Proceedings of the 2008 Conference on Future Play: Research, Play, Share, pp. 81–88. ACM (2008)

    Google Scholar 

  35. Nacke, L.E., Grimshaw, M.N., Lindley, C.A.: More than a feeling: measurement of sonic user experience and psychophysiology in a first-person shooter game. Interact. Comput. 22(5), 336–343 (2010)

    Article  Google Scholar 

  36. Nilsson, N.C., Serafin, S., Nordahl, R.: A comparison of different methods for reducing the unintended positional drift accompanying walking-in-place locomotion. In: 2014 IEEE Symposium on 3D User Interfaces (3DUI), pp. 103–110. IEEE (2014)

    Google Scholar 

  37. Ohshima, T., Shibata, R., Edamoto, H., Tatewaki, N.: Virtual ISU: locomotion interface for immersive VR experience in seated position (1). In: SIGGRAPH ASIA 2016 Posters, pp. 1–2 (2016)

    Google Scholar 

  38. Olszewski, K., Lim, J.J., Saito, S., Li, H.: High-fidelity facial and speech animation for VR HMDs. ACM Trans. Graph. 35(6), 221 (2016)

    Article  Google Scholar 

  39. Rand, D., Kizony, R., Weiss, P.T.L.: The Sony PlayStation II EyeToy: low-cost virtual reality for use in rehabilitation. J. Neurol. Phys. Therapy 32(4), 155–163 (2008)

    Article  Google Scholar 

  40. Sarupuri, B., Hoermann, S., Whitton, M.C., Lindeman, R.W.: Lute: a locomotion usability test environment for virtual reality. In: 2018 10th International Conference on Virtual Worlds and Games for Serious Applications (VS-Games), pp. 1–4. IEEE (2018)

    Google Scholar 

  41. Sauro, J., Lewis, J.R.: When designing usability questionnaires, does it hurt to be positive? In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 2215–2224 (2011)

    Google Scholar 

  42. Schild, J., LaViola, J., Masuch, M.: Understanding user experience in stereoscopic 3D games. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 89–98. ACM (2012)

    Google Scholar 

  43. Schmidt, D., et al.: Level-ups: motorized stilts that simulate stair steps in virtual reality. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pp. 2157–2160 (2015)

    Google Scholar 

  44. Skopp, N.A., Smolenski, D.J., Metzger-Abamukong, M.J., Rizzo, A.A., Reger, G.M.: A pilot study of the virtusphere as a virtual reality enhancement. Int. J. Hum.-Comput. Interact. 30(1), 24–31 (2014)

    Article  Google Scholar 

  45. Slater, M., Steed, A.: A virtual presence counter. Presence: Teleoper. Virtual Environ. 9(5), 413–434 (2000)

    Google Scholar 

  46. Sun, H.M., Li, S.P., Zhu, Y.Q., Hsiao, B.: The effect of user’s perceived presence and promotion focus on usability for interacting in virtual environments. Appl. Ergon. 50, 126–132 (2015)

    Article  Google Scholar 

  47. Toet, A., van Welie, M., Houtkamp, J.: Is a dark virtual environment scary? CyberPsychology Behav. 12(4), 363–371 (2009)

    Article  Google Scholar 

  48. Tullis, T.S., Stetson, J.N.: A comparison of questionnaires for assessing website usability. In: Proceedings of the Usability Professional Association Conference, pp. 1–12 (2004)

    Google Scholar 

  49. Ulozienė, I., et al.: Subjective visual vertical assessment with mobile virtual reality system. Medicina 53(6), 394–402 (2017)

    Article  Google Scholar 

  50. Witmer, B.G., Singer, M.J.: Measuring presence in virtual environments: a presence questionnaire. Presence 7(3), 225–240 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costas Boletsis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Boletsis, C. (2020). A User Experience Questionnaire for VR Locomotion: Formulation and Preliminary Evaluation. In: De Paolis, L., Bourdot, P. (eds) Augmented Reality, Virtual Reality, and Computer Graphics. AVR 2020. Lecture Notes in Computer Science(), vol 12242. Springer, Cham. https://doi.org/10.1007/978-3-030-58465-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58465-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58464-1

  • Online ISBN: 978-3-030-58465-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics