Skip to main content

Content-Aware Unsupervised Deep Homography Estimation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12346))

Included in the following conference series:

Abstract

Homography estimation is a basic image alignment method in many applications. It is usually conducted by extracting and matching sparse feature points, which are error-prone in low-light and low-texture images. On the other hand, previous deep homography approaches use either synthetic images for supervised learning or aerial images for unsupervised learning, both ignoring the importance of handling depth disparities and moving objects in real world applications. To overcome these problems, in this work we propose an unsupervised deep homography method with a new architecture design. In the spirit of the RANSAC procedure in traditional methods, we specifically learn an outlier mask to only select reliable regions for homography estimation. We calculate loss with respect to our learned deep features instead of directly comparing image content as did previously. To achieve the unsupervised training, we also formulate a novel triplet loss customized for our network. We verify our method by conducting comprehensive comparisons on a new dataset that covers a wide range of scenes with varying degrees of difficulties for the task. Experimental results reveal that our method outperforms the state-of-the-art including deep solutions and feature-based solutions.

J. Zhang and C. Wang—Joint First Author.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Altwaijry, H., Veit, A., Belongie, S.J., Tech, C.: Learning to detect and match keypoints with deep architectures. In: Proceedings of BMVC (2016)

    Google Scholar 

  2. Baker, S., Matthews, I.: Lucas-kanade 20 years on: a unifying framework. Int. J. Comput. Vis. 56(3), 221–255 (2004)

    Article  Google Scholar 

  3. Barath, D., Matas, J., Noskova, J.: MAGSAC: marginalizing sample consensus. In: Proceedings of CVPR, pp. 10197–10205 (2019)

    Google Scholar 

  4. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_32

    Chapter  Google Scholar 

  5. Bian, J., Lin, W.Y., Matsushita, Y., Yeung, S.K., Nguyen, T.D., Cheng, M.M.: GMS: grid-based motion statistics for fast, ultra-robust feature correspondence. In: Proceedings of CVPR, pp. 4181–4190 (2017)

    Google Scholar 

  6. Brown, M., Lowe, D.: Recognising panoramas. In: Proceedings of ICCV, p. 1218 (2003)

    Google Scholar 

  7. DeTone, D., Malisiewicz, T., Rabinovich, A.: Deep image homography estimation. arXiv preprint arXiv:1606.03798 (2016)

  8. Evangelidis, G.D., Psarakis, E.Z.: Parametric image alignment using enhanced correlation coefficient maximization. IEEE Trans. Pattern Anal. Mach. Intell. 30(10), 1858–1865 (2008)

    Article  Google Scholar 

  9. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  10. Gelfand, N., Adams, A., Park, S.H., Pulli, K.: Multi-exposure imaging on mobile devices. In: Proceedings of ACM Multimedia, pp. 823–826 (2010)

    Google Scholar 

  11. Godard, C., Mac, O., Firman, M., Brostow, G.J.: Digging into self-supervised monocular depth estimation. In: Proceedings of ICCV, pp. 3828–3838 (2019)

    Google Scholar 

  12. Guo, H., Liu, S., He, T., Zhu, S., Zeng, B., Gabbouj, M.: Joint video stitching and stabilization from moving cameras. IEEE Trans. Image Process. 25(11), 5491–5503 (2016)

    Article  MathSciNet  Google Scholar 

  13. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of CVPR, pp. 770–778 (2016)

    Google Scholar 

  15. Holland, P.W., Welsch, R.E.: Robust regression using iteratively reweighted least-squares. Commun. Stat. Theo. Methods 6(9), 813–827 (1977)

    Article  Google Scholar 

  16. Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T.: FlowNet 2.0: evolution of optical flow estimation with deep networks. In: Proceedings of CVPR, pp. 2462–2470 (2017)

    Google Scholar 

  17. Jaderberg, M., Simonyan, K., Zisserman, A., et al.: Spatial transformer networks. In: Advances in Neural Information Processing Systems, pp. 2017–2025 (2015)

    Google Scholar 

  18. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  19. Lin, K., Jiang, N., Liu, S., Cheong, L.F., Do, M., Lu, J.: Direct photometric alignment by mesh deformation. In: Proceedings of CVPR, pp. 2405–2413 (2017)

    Google Scholar 

  20. Liu, S., Tan, P., Yuan, L., Sun, J., Zeng, B.: MeshFlow: minimum latency online video stabilization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 800–815. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_48

    Chapter  Google Scholar 

  21. Liu, S., Yuan, L., Tan, P., Sun, J.: Bundled camera paths for video stabilization. ACM Trans. Graph. 32(4), 78 (2013)

    Google Scholar 

  22. Liu, Z., Yuan, L., Tang, X., Uyttendaele, M., Sun, J.: Fast burst images denoising. ACM Trans. Graph. 33(6), 1–9 (2014)

    Google Scholar 

  23. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  24. Lucas, B.D., Kanade, T., et al.: An iterative image registration technique with an application to stereo vision. In: Proceedings of IJCAI (1981)

    Google Scholar 

  25. Ma, J., Zhao, J., Jiang, J., Zhou, H., Guo, X.: Locality preserving matching. Int. J. Comput. Vis. 127(5), 512–531 (2019)

    Article  MathSciNet  Google Scholar 

  26. Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: ORB-SLAM: a versatile and accurate monocular slam system. IEEE Trans. Robot. 31(5), 1147–1163 (2015)

    Article  Google Scholar 

  27. Nguyen, T., Chen, S.W., Shivakumar, S.S., Taylor, C.J., Kumar, V.: Unsupervised deep homography: a fast and robust homography estimation model. IEEE Robot. Autom. Lett. 3(3), 2346–2353 (2018)

    Article  Google Scholar 

  28. Revaud, J., Weinzaepfel, P., Harchaoui, Z., Schmid, C.: Deepmatching: hierarchical deformable dense matching. Int. J. Comput. Vis. 120(3), 300–323 (2016)

    Article  MathSciNet  Google Scholar 

  29. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.R.: ORB: an efficient alternative to SIFT or SURF. In: Proceedings of ICCV, vol. 11, pp. 2564–2571 (2011)

    Google Scholar 

  30. Simon, G., Fitzgibbon, A.W., Zisserman, A.: Markerless tracking using planar structures in the scene. In: Proceedings of International Symposium on Augmented Reality, pp. 120–128 (2000)

    Google Scholar 

  31. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  32. Tian, Y., Yu, X., Fan, B., Wu, F., Heijnen, H., Balntas, V.: SOSNet: second order similarity regularization for local descriptor learning. In: Proceedings of CVPR, pp. 11016–11025 (2019)

    Google Scholar 

  33. Weinzaepfel, P., Revaud, J., Harchaoui, Z., Schmid, C.: Deepflow: large displacement optical flow with deep matching. In: Proceedings of CVPR, pp. 1385–1392 (2013)

    Google Scholar 

  34. Wronski, B., et al.: Handheld multi-frame super-resolution. ACM Trans. Graph. 38(4), 1–18 (2019)

    Article  Google Scholar 

  35. Yi, K.M., Trulls, E., Lepetit, V., Fua, P.: LIFT: learned invariant feature transform. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 467–483. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_28

    Chapter  Google Scholar 

  36. Zaragoza, J., Chin, T.J., Brown, M.S., Suter, D.: As-projective-as-possible image stitching with moving DLT. In: Proceedings of CVPR, pp. 2339–2346 (2013)

    Google Scholar 

  37. Zhang, F., Liu, F.: Parallax-tolerant image stitching. In: Proceedings of CVPR, pp. 3262–3269 (2014)

    Google Scholar 

  38. Zhang, J., et al.: Learning two-view correspondences and geometry using order-aware network. In: Proceedings of ICCV, pp. 5845–5854 (2019)

    Google Scholar 

  39. Zhang, X., Zhou, X., Lin, M., Sun, J.: ShuffleNet: an extremely efficient convolutional neural network for mobile devices. In: Proceedings of CVPR, pp. 6848–6856 (2018)

    Google Scholar 

  40. Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000)

    Article  Google Scholar 

  41. Zhou, T., Brown, M., Snavely, N., Lowe, D.G.: Unsupervised learning of depth and ego-motion from video. In: Proceedings of CVPR, pp. 1851–1858 (2017)

    Google Scholar 

  42. Zou, D., Tan, P.: CoSLAM: collaborative visual slam in dynamic environments. IEEE Trans. Pattern Anal. Mach. Intell. 35(2), 354–366 (2012)

    Article  Google Scholar 

Download references

Acknowledgment

This research was supported in part by National Key Research and Development Program of China under Grant 2017YFA0700800, in part by National Natural Science Foundation of China under Grants (NSFC, No. 61872067 and No. 61720106004) and in part by Research Programs of Science and Technology in Sichuan Province under Grant 2019YFH0016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuaicheng Liu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 85432 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, J. et al. (2020). Content-Aware Unsupervised Deep Homography Estimation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12346. Springer, Cham. https://doi.org/10.1007/978-3-030-58452-8_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58452-8_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58451-1

  • Online ISBN: 978-3-030-58452-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics