Skip to main content

Total Fatigue Life Estimation of Aircraft Structural Components Under General Load Spectra

  • Conference paper
  • First Online:
Experimental and Computational Investigations in Engineering (CNNTech 2020)

Abstract

This work presents total fatigue life prediction methodology of aircraft structural components under general load spectrum. Here is presented an effective computation procedure, that combines the finite element method (FEM) and strain-life methods to predict fatigue crack initiation life and fatigue crack growth model based on the strain energy density (SED) method. To validate computation procedure in this paper has been experimental tested specimens with a central hole under load spectrum in form of blocks. Total fatigue life of these specimens, defined as sum of crack initiation and crack growth life, was experimentally determined. Crack initiation life was computed using the theory of low cycle fatigue. Computation of crack initiation life was realized using Palmgreen-Miner’s linear rule of damage accumulation, applied on Morrow’s curves of low cycle fatigue. Crack growth life was computed using strain energy density (SED) method. The same low cyclic material properties of quenched and tempered steel 13H11N2V2MF, used for crack initiation life computation, were used for crack growth life computation. Residual life estimation of cracked duraluminum aircraft wing skin/plate 2219-T851 under multiple overload/underload load spectrum was considered too. Presented computation results were compared with own and available experimentally obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bannantine, J.A., Comer, J., Handrock, J.: Fundamentals of Material Fatigue Analysis. Prentice-Hall, Englewood Clifs (1990)

    Google Scholar 

  2. Boljanovic, S., Maksimovic, S., Carpinteri, A.: Residual strength evaluation under mixed mode loading. In: Proceedings Paper - ICMFF12 – 12 th International Conference on Multiaxial Fatigue and Fracture, vol. 300, br., str. (2019)

    Google Scholar 

  3. Dowling, N.E.: Mechanical Behavior of Materials, 2nd edn. Prentice Hall, Jersey (1999)

    Google Scholar 

  4. Smith, K.N., Watson, P., Topper, T.H.: A stress–strain functions for the fatigue of metals. J. Mater. 5, 767–778 (1970)

    Google Scholar 

  5. Posavljak, S., Maksimović, S.: Increasing of fatigue resistance of aero engine disks. WSEAS Trans. Appl. Theor. Mech. 1(2), 133–140 (2006)

    Google Scholar 

  6. Chang, J.B., Engle, R.M., Stolpestad, J.: Fatigue Crack Growth Behavior and Life Predictions for 2219-T851 Aluminum Subjected to Variable-Amplitude Loadings, ASTM STP 743 (1981)

    Google Scholar 

  7. Hong-Z, H., et al.: Fatigue life estimation of an aircraft engine under different load spectrums. Int. J. Turbo Jet-Engines 29, 259–267 (2012)

    Google Scholar 

  8. Yin, Z.Y.: Manual for Design of Turbo Engine: Fascicule 18, Strength Analysis of Turbine Disk and Shaft. Aviation Industry Press, Beijing (2007)

    Google Scholar 

  9. Li, S.M.: The Fatigue and Reliability Design in Mechanics. Science Press, Beijing (2006)

    Google Scholar 

  10. Vasovic, I., Maksimovic, S., Maksimovic, K., Stupar, S., Bakic, G., Maksimovic, M.: Determination of stress intensity factors in low pressure turbine rotor discs. Math. Probl. Eng. 2014, 9 pages. Article ID 304638. https://doi.org/10.1155/2014/304638

  11. Posavljak, S.: Fatigue life investigation of aero engine rotating disks, Doctoral dissertation, Belgrade University, Faculty of Mechanical Engineering (2008). (in Serbian)

    Google Scholar 

  12. Sonsino, C.M.: Zur Bewertung des Schwingfestigkeitsverhaltens von Bauteilen mit Hilife örtlicher Beanspruchungen. Konstruktion 45, 25–33 (1993)

    Google Scholar 

  13. Schijve, J.: Fatigue of Structures and Materials, 2nd edn. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  14. Sehitoglu, H., Gall, K., García, A.M.: Recent advances in fatigue crack growth modeling. Int. J. Fract. 80, 165–192 (1996)

    Article  Google Scholar 

  15. Maksimovic, S., Vasovic, I., Maksimovic, M., Đuric, M.: Residual life estimation of damaged structural components using low-cycle fatigue properties. In: Third Serbian Congress Theoretical and Applied Mechanics, Vlasina Lake, pp. 605–617 (2011). ISBN 978-86-909973-3-6

    Google Scholar 

  16. Vasovic, I., Maksimovic, S., Maksimovic, K., Stupar, S., Maksimović, M., Bakic, G.: Fracture mechanics analysis of damaged turbine discs using finite element method. Therm. Sci. 18(Suppl. 1), S107–S112 (2014)

    Article  Google Scholar 

  17. Maksimovic, S., Kozic, M., Stetic-Kozic, S., Maksimovic, K., Vasovic, I., Maksimovic, M.: Determination of load distributions on main helicopter rotor blades and strength analysis of its structural components. J. Aerosp. Eng. 27, br. 6 (2014)

    Google Scholar 

  18. Maksimovic, S., Posavljak, S., Maksimovic, K., Nikolic, V., Djurkovic, V.: Total fatigue life estimation of notched structural components using low cycle fatigue properties. J. Strain 47, 341–349 (2010)

    Article  Google Scholar 

  19. Balac, M., Grbovic, A., Petrovic, A., Popovic, V.: Fem analysis of pressure vessel with an investigation of crack growth on cylindrical surface. Eksploatacja i Niezawodnosc – Maint. Reliab. 20(3), 378–386 2018. https://doi.org/10.17531/ein.2018.3.5

  20. Bajić, D., Momčilović, N., Maneski, T., Balać, M., Kozak, D., Ćulafić, S.: Numerical and experimental determination of stress concentration factor for a pipe branches. Tech. Gaz. 24(3), 687–692 (2017). ISSN 1848-6339. https://doi.org/10.17559/tv-20151126222916

  21. Petrovic, A., Balac, M., Jovovic, A., Dedic, A.: Oblique nozzle loaded by the torque moment–stress state in the cylindrical shells on the pressure vessel. Proc. Inst. Part C J. Mech. Eng. Sci. 226(3), 567–575 (2011). https://doi.org/10.1177/0954406211415907

  22. Izumi, Y., Fine, M.E., Mura, T.: Energy consideration in fatigue crack propagation. Int. J. Fract. 17(1), 15–25 (1981)

    Google Scholar 

  23. Vidanovic, N., Rasuo, B., Kastratovic, G., Grbovic, A., Puharic, M., Maksimovic, K.: Multidisciplinary shape optimization of missile fin configuration subject to aerodynamic heating. J. Spacecraft Rockets (2019). https://doi.org/10.2514/1.A34575

    Article  Google Scholar 

  24. Geier, W.: Strength Behaviour of Fatigue Cracked Lugs. Royal Aircraft Establishment, LT 20057 (1980)

    Google Scholar 

  25. Pantelakis, Sp.G., Kermanidis, Th.B., Pavlou, D.G.: Fatigue crack growth retardation assesment of 2024-T3 and 6061-T6 aluminum specimens. Theor. Appl. Fract. Mech. 22, 43–47 (1995)

    Google Scholar 

  26. Ellyin, F.: Fatigue damage, crack growth and life prediction. Fract. Mech. 48(1), 9–15 (1997)

    Google Scholar 

Download references

Acknowledgment

The authors would like to thank the Ministry of Education, Science and Technological Development of the Republic of Serbia for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivana Vasovic Maksimovic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Maksimovic, K., Posavljak, S., Maksimovic, M., Vasovic Maksimovic, I., Balac, M. (2021). Total Fatigue Life Estimation of Aircraft Structural Components Under General Load Spectra. In: Mitrovic, N., Mladenovic, G., Mitrovic, A. (eds) Experimental and Computational Investigations in Engineering. CNNTech 2020. Lecture Notes in Networks and Systems, vol 153. Springer, Cham. https://doi.org/10.1007/978-3-030-58362-0_23

Download citation

Publish with us

Policies and ethics