Skip to main content

Assembly and Function of Nitrogenase

  • Chapter
  • First Online:
Enzymes for Solving Humankind's Problems

Abstract

Nitrogenase is the complex metalloenzyme responsible for the crucial process of biological nitrogen fixation, in which atmospheric dinitrogen (N2) is converted into bioavailable ammonia (NH3). This involves the breaking of the inert N≡N triple bond, a remarkable feat that is made possible by the unique metal clusters—the [Fe8S7] P-cluster and the [MoFe7S9C-R-homocitrate] M-cluster. Recent studies on molybdenum-dependent nitrogenase have greatly extended our understanding of how both of these fascinating metal clusters are assembled from common [Fe4S4] building blocks, as well as on the series of intriguing interplay between the proteins that are involved. In parallel, independent biochemical, spectroscopic, and structural investigations combine to provide unprecedented insights into the enigmatic mechanism of N2 reduction. In this chapter, evidence that led up to these findings will be outlined and discussed in their respective contexts, followed by a brief perspective on the outlook of the nitrogenase field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vitousek PM, Hättenschwiler S, Olander L, Allison S (2002) Nitrogen and nature. Ambio 31(2):97–101

    Article  PubMed  Google Scholar 

  2. Gruber N, Galloway JN (2008) An Earth-system perspective of the global nitrogen cycle. Nature 451(7176):293–296

    Article  CAS  PubMed  Google Scholar 

  3. Galloway JN, Cowling EB (2002) Reactive nitrogen and the world: 200 years of change. Ambio 31(2):64–71

    Article  PubMed  Google Scholar 

  4. Burgess BK, Lowe DJ (1996) Mechanism of molybdenum nitrogenase. Chem Rev 96(7):2983–3012

    Article  CAS  PubMed  Google Scholar 

  5. Howard JB, Rees DC (1996) Structural basis of biological nitrogen fixation. Chem Rev 96(7):2965–2982

    Article  CAS  PubMed  Google Scholar 

  6. Jasniewski AJ, Lee CC, Ribbe MW, Hu Y (2020) Reactivity, mechanism, and assembly of the alternative nitrogenases. Chem Rev. https://doi.org/10.1021/acs.chemrev.9b00704

    Article  PubMed  PubMed Central  Google Scholar 

  7. Burén S, Jiménez-Vicente E, Echavarri-Erasun C, Rubio LM (2020) Biosynthesis of nitrogenase cofactors. Chem Rev. https://doi.org/10.1021/acs.chemrev.9b00489

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rutledge HL, Tezcan FA (2020) Electron transfer in nitrogenase. Chem Rev. https://doi.org/10.1021/acs.chemrev.9b00663

    Article  PubMed  PubMed Central  Google Scholar 

  9. Seefeldt LC, Yang ZY, Lukoyanov DA et al (2020) Reduction of substrates by nitrogenases. Chem Rev. https://doi.org/10.1021/acs.chemrev.9b00556

    Article  PubMed  PubMed Central  Google Scholar 

  10. Rees DC (2002) Great metalloclusters in enzymology. Annu Rev Biochem 71:221–246

    Article  CAS  PubMed  Google Scholar 

  11. Howard JB, Rees DC (1994) Nitrogenase: a nucleotide-dependent molecular switch. Annu Rev Biochem 63:235–264

    Article  CAS  PubMed  Google Scholar 

  12. Thorneley R, Lowe D (1996) Nitrogenase: substrate binding and activation. J Biol Inorg Chem 1:576–580

    Article  CAS  Google Scholar 

  13. Lindahl PA, Day EP, Kent TA, Orme-Johnson WH, Münck E (1985) Mössbauer, EPR, and magnetization studies of the Azotobacter vinelandii Fe protein. Evidence for a [4Fe-4S]1+ cluster with spin S = 3/2. J Biol Chem 260(20):11160–11173

    Google Scholar 

  14. Watt GD, McDonald JW (1985) Electron paramagnetic resonance spectrum of the iron protein of nitrogenase: existence of a g = 4 spectral component and its effect on spin quantization Biochemistry 24:7226–7231

    Google Scholar 

  15. Lanzilotta WN, Ryle MJ, Seefeldt LC (1995) Nucleotide hydrolysis and protein conformational changes in Azotobacter vinelandii nitrogenase iron protein: defining the function of aspartate 129. Biochemistry 34(34):10713–10723

    Article  CAS  PubMed  Google Scholar 

  16. Watt GD, Reddy KRN (1994) Formation of an all ferrous Fe4S4 cluster in the iron protein component of Azotobacter vinelandii nitrogenase. J. Inorg. Biochem 53:281–294

    Article  CAS  Google Scholar 

  17. Guo M, Sulc F, Ribbe MW, Farmer PJ, Burgess BK (2002) Direct assessment of the reduction potential of the [4Fe-4S]1+/0 couple of the Fe protein from Azotobacter vinelandii. J Am Chem Soc 124(41):12100–12101

    Article  CAS  PubMed  Google Scholar 

  18. Kim J, Rees DC (1992) Crystallographic structure and functional implications of the nitrogenase molybdenum-iron protein from Azotobacter vinelandii. Nature 360(6404):553–560

    Article  CAS  PubMed  Google Scholar 

  19. Chan MK, Kim J, Rees DC (1993) The nitrogenase FeMo-cofactor and P-cluster pair: 2.2 Å resolution structures. Science 260(5109):792–794

    Google Scholar 

  20. Peters JW, Stowell MH, Soltis SM, Finnegan MG, Johnson MK, Rees DC (1997) Redox-dependent structural changes in the nitrogenase P-cluster. Biochemistry 36(6):1181–1187

    Article  CAS  PubMed  Google Scholar 

  21. Sørlie M, Christiansen J, Lemon BJ, Peters JW, Dean DR, Hales BJ (2001) Mechanistic features and structure of the nitrogenase α-Gln195 MoFe protein. Biochemistry 40(6):1540–1549

    Article  PubMed  CAS  Google Scholar 

  22. Einsle O, Tezcan FA, Andrade SL et al (2002) Nitrogenase MoFe-protein at 1.16 Å resolution: a central ligand in the FeMo-cofactor. Science 297(5587):1696–1700

    Google Scholar 

  23. Schmid B, Ribbe MW, Einsle O et al (2002) Structure of a cofactor-deficient nitrogenase MoFe protein. Science 296(5566):352–356

    Article  CAS  PubMed  Google Scholar 

  24. Tezcan FA, Kaiser JT, Mustafi D, Walton MY, Howard JB, Rees DC (2005) Nitrogenase complexes: multiple docking sites for a nucleotide switch protein. Science 309(5739):1377–1380

    Article  CAS  PubMed  Google Scholar 

  25. Schindelin H, Kisker C, Schlessman JL, Howard JB, Rees DC (1997) Structure of ADP · AIF4–stabilized nitrogenase complex and its implications for signal transduction. Nature 387(6631):370–376

    Article  CAS  PubMed  Google Scholar 

  26. Schmid B, Einsle O, Chiu HJ et al (2002) Biochemical and structural characterization of the cross-linked complex of nitrogenase: comparison to the ADP · AIF4–stabilized structure. Biochemistry 41(52):15557–15565

    Article  CAS  PubMed  Google Scholar 

  27. Surerus KK, Hendrich MP, Christie PD, Rottgardt D, Orme-Johnson WH, Münck E (1992) Mössbauer and integer-spin EPR of the oxidized P-clusters of nitrogenase: POX is a non-Kramers system with a nearly degenerate ground doublet. J Am Chem Soc 114(22):8579–8590

    Article  CAS  Google Scholar 

  28. Zimmermann R, Münck E, Brill WJ, et al (1978) Nitrogenase X: Mössbauer and EPR studies on reversibly oxidized MoFe protein from Azotobacter vinelandii OP. Nature of the iron centers. Biochim Biophys Acta 537(2):185–207

    Google Scholar 

  29. Pierik AJ, Wassink H, Haaker H, Hagen WR (1993) Redox properties and EPR spectroscopy of the P clusters of Azotobacter vinelandii MoFe protein. Eur J Biochem 212(1):51–61

    Article  CAS  PubMed  Google Scholar 

  30. Keable SM, Zadvornyy OA, Johnson LE et al (2018) Structural characterization of the P1+ intermediate state of the P-cluster of nitrogenase. J Biol Chem 293(25):9629–9635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rutledge HL, Rittle J, Williamson LM, Xu WA, Gagnon DM, Tezcan FA (2019) Redox-dependent metastability of the nitrogenase P-cluster. J Am Chem Soc 141(25):10091–10098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Spatzal T, Aksoyoglu M, Zhang L et al (2011) Evidence for interstitial carbon in nitrogenase FeMo cofactor. Science 334(6058):940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Burgess BK (1990) The iron-molybdenum cofactor of nitrogenase. Chem Rev 90:1377–1406

    Article  CAS  Google Scholar 

  34. Shah VK, Brill WJ (1977) Isolation of an iron-molybdenum cofactor from nitrogenase. Proc Natl Acad Sci U S A 74(8):3249–3253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sickerman NS, Rettberg LA, Lee CC, Hu Y, Ribbe MW (2017) Cluster assembly in nitrogenase. Essays Biochem 61(2):271–279

    Article  PubMed  Google Scholar 

  36. Hu Y, Ribbe MW (2016a) Biosynthesis of the metalloclusters of nitrogenases. Annu Rev Biochem 85:455–483

    Article  CAS  PubMed  Google Scholar 

  37. Ribbe MW, Hu Y, Hodgson KO, Hedman B (2014) Biosynthesis of nitrogenase metalloclusters. Chem Rev 114(8):4063–4080

    Article  CAS  PubMed  Google Scholar 

  38. Smith AD, Jameson GN, Dos Santos PC et al (2005) NifS-mediated assembly of [4Fe-4S] clusters in the N- and C-terminal domains of the NifU scaffold protein. Biochemistry 44(39):12955–12969

    Article  CAS  PubMed  Google Scholar 

  39. Yuvaniyama P, Agar JN, Cash VL, Johnson MK, Dean DR (2000) NifS-directed assembly of a transient [2Fe-2S] cluster within the NifU protein. Proc Natl Acad Sci U S A 97(2):599–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kennedy C, Dean D (1992) The nifU, nifS and nifV gene products are required for activity of all three nitrogenases of Azotobacter vinelandii. Mol Gen Genet 231(3):494–498

    Article  CAS  PubMed  Google Scholar 

  41. Ribbe MW, Hu Y, Guo M, Schmid B, Burgess BK (2002) The FeMoco-deficient MoFe protein produced by a nifH deletion strain of Azotobacter vinelandii shows unusual P-cluster features. J Biol Chem 277(26):23469–23476

    Article  CAS  PubMed  Google Scholar 

  42. Hu Y, Fay AW, Dos Santos PC, Naderi F, Ribbe MW (2004) Characterization of Azotobacter vinelandii nifZ deletion strains. Indication of stepwise MoFe protein assembly. J Biol Chem 279(52):54963–54971

    Google Scholar 

  43. Corbett MC, Hu Y, Naderi F, Ribbe MW, Hedman B, Hodgson KO (2004) Comparison of iron-molybdenum cofactor-deficient nitrogenase MoFe proteins by X-ray absorption spectroscopy: implications for P-cluster biosynthesis. J Biol Chem 279(27):28276–28282

    Article  CAS  PubMed  Google Scholar 

  44. Broach RB, Rupnik K, Hu Y et al (2006) Variable-temperature, variable-field magnetic circular dichroism spectroscopic study of the metal clusters in the ΔnifB and ΔnifH MoFe proteins of nitrogenase from Azotobacter vinelandii. Biochemistry 45(50):15039–15048

    Article  CAS  PubMed  Google Scholar 

  45. Rupnik K, Lee CC, Hu Y, Ribbe MW, Hales BJ (2011) [4Fe4S]2+ clusters exhibit ground-state paramagnetism. J Am Chem Soc 133(18):6871–6873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lee CC, Blank MA, Fay AW et al (2009) Stepwise formation of P-cluster in nitrogenase MoFe protein. Proc Natl Acad Sci U S A 106(44):18474–18478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hu Y, Fay AW, Lee CC, Ribbe MW (2007) P-cluster maturation on nitrogenase MoFe protein. Proc Natl Acad Sci U S A 104(25):10424–10429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rupnik K, Lee CC, Hu Y, Ribbe MW, Hales BJ (2018) A VTVH MCD and EPR spectroscopic study of the maturation of the “second” nitrogenase P-cluster. Inorg Chem 57(8):4719–4725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rupnik K, Lee CC, Wiig JA, Hu Y, Ribbe MW, Hales BJ (2014) Nonenzymatic synthesis of the P-cluster in the nitrogenase MoFe protein: evidence of the involvement of all-ferrous [Fe4S4]0 intermediates. Biochemistry 53(7):1108–1116

    Article  CAS  PubMed  Google Scholar 

  50. Corbett MC, Hu Y, Fay AW et al (2007) Conformational differences between Azotobacter vinelandii nitrogenase MoFe proteins as studied by small-angle X-ray scattering. Biochemistry 46(27):8066–8074

    Article  CAS  PubMed  Google Scholar 

  51. Wiig JA, Hu Y, Ribbe MW (2011) NifEN-B complex of Azotobacter vinelandii is fully functional in nitrogenase FeMo cofactor assembly. Proc Natl Acad Sci U S A 108(21):8623–8627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hu Y, Ribbe MW (2016b) Maturation of nitrogenase cofactor-the role of a class E radical SAM methyltransferase NifB. Curr Opin Chem Biol 31:188–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Frey PA, Hegeman AD, Ruzicka FJ (2008) The radical SAM superfamily. Crit Rev Biochem Mol Biol 43(1):63–88

    Article  CAS  PubMed  Google Scholar 

  54. Wiig JA, Hu Y, Lee CC, Ribbe MW (2012) Radical SAM-dependent carbon insertion into the nitrogenase M-cluster. Science 337(6102):1672–1675

    Article  CAS  PubMed  Google Scholar 

  55. Wiig JA, Hu Y, Ribbe MW (2015) Refining the pathway of carbide insertion into the nitrogenase M-cluster. Nat Commun 6:8034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fay AW, Wiig JA, Lee CC, Hu Y (2015) Identification and characterization of functional homologs of nitrogenase cofactor biosynthesis protein NifB from methanogens. Proc Natl Acad Sci U S A 112(48):14829–14833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Boal AK, Grove TL, McLaughlin MI, Yennawar NH, Booker SJ, Rosenzweig AC (2011) Structural basis for methyl transfer by a radical SAM enzyme. Science 332(6033):1089–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Grove TL, Benner JS, Radle MI et al (2011) A radically different mechanism for S-adenosylmethionine-dependent methyltransferases. Science 332(6029):604–607

    Article  CAS  PubMed  Google Scholar 

  59. Rettberg LA, Wilcoxen J, Lee CC et al (2018) Probing the coordination and function of Fe4S4 modules in nitrogenase assembly protein NifB. Nat Commun 9(1):2824

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Rettberg LA, Wilcoxen J, Jasniewski AJ et al (2020) Identity and function of an essential nitrogen ligand of the nitrogenase cofactor biosynthesis protein NifB. Nat Commun 11(1):1757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tanifuji K, Lee CC, Sickerman NS et al (2018) Tracing the ‘ninth sulfur’ of the nitrogenase cofactor via a semi-synthetic approach. Nat Chem 10(5):568–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jasniewski AJ, Wilcoxen J, Tanifuji K et al (2019) Spectroscopic characterization of an eight-iron nitrogenase cofactor precursor that lacks the “9th sulfur.” Angew Chem Int Ed Engl 58(41):14703–14707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Fugate CJ, Jarrett JT (2012) Biotin synthase: insights into radical-mediated carbon-sulfur bond formation. Biochim Biophys Acta 1824(11):1213–1222

    Google Scholar 

  64. Zheng L, White RH, Cash VL, Dean DR (1994) Mechanism for the desulfurization of L-cysteine catalyzed by the nifS gene product. Biochemistry 33(15):4714–4720

    Article  CAS  PubMed  Google Scholar 

  65. Rupnik K, Tanifuji K, Rettberg L, Ribbe MW, Hu Y, Hales BJ (2019) Electron paramagnetic resonance and magnetic circular dichroism spectra of the nitrogenase M cluster precursor suggest sulfur migration upon oxidation: a proposal for substrate and inhibitor binding. Chem BioChem. https://doi.org/10.1002/cbic.201900681

    Article  Google Scholar 

  66. Goodwin PJ, Agar JN, Roll JT, Roberts GP, Johnson MK, Dean DR (1998) The Azotobacter vinelandii NifEN complex contains two identical [4Fe-4S] clusters. Biochemistry 37(29):10420–10428

    Article  CAS  PubMed  Google Scholar 

  67. Hu Y, Fay AW, Ribbe MW (2005) Identification of a nitrogenase FeMo cofactor precursor on NifEN complex. Proc Natl Acad Sci U S A 102(9):3236–3241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Corbett MC, Hu Y, Fay AW, Ribbe MW, Hedman B, Hodgson KO (2006) Structural insights into a protein-bound iron-molybdenum cofactor precursor. Proc Natl Acad Sci U S A 103(5):1238–1243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lancaster KM, Hu Y, Bergmann U, Ribbe MW, DeBeer S (2013) X-ray spectroscopic observation of an interstitial carbide in NifEN-bound FeMoco precursor. J Am Chem Soc 135(2):610–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kaiser JT, Hu Y, Wiig JA, Rees DC, Ribbe MW (2011) Structure of precursor-bound NifEN: a nitrogenase FeMo cofactor maturase/insertase. Science 331(6013):91–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hu Y, Corbett MC, Fay AW et al (2006a) Nitrogenase Fe protein: A molybdate/homocitrate insertase. Proc Natl Acad Sci U S A 103(46):17125–17130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hu Y, Corbett MC, Fay AW et al (2006b) FeMo cofactor maturation on NifEN. Proc Natl Acad Sci U S A 103(46):17119–17124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yoshizawa JM, Blank MA, Fay AW et al (2009) Optimization of FeMoco maturation on NifEN. J Am Chem Soc 131(26):9321–9325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fay AW, Blank MA, Lee CC et al (2011) Spectroscopic characterization of the isolated iron-molybdenum cofactor (FeMoco) precursor from the protein NifEN. Angew Chem Int Ed Engl 50(34):7787–7790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Fay AW, Blank MA, Rebelein JG et al (2016) Assembly scaffold NifEN: a structural and functional homolog of the nitrogenase catalytic component. Proc Natl Acad Sci U S A 113(34):9504–9508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fay AW, Blank MA, Yoshizawa JM et al (2010) Formation of a homocitrate-free iron-molybdenum cluster on NifEN: implications for the role of homocitrate in nitrogenase assembly. Dalton Trans 39(12):3124–3130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Solomon JB, Lee CC, Jasniewski AJ, Rasekh MF, Ribbe MW, Hu Y (2020) Heterologous expression and engineering of the nitrogenase cofactor biosynthesis scaffold NifEN. Angew Chem Int Ed Engl 59(17):6887–6893

    Article  CAS  PubMed  Google Scholar 

  78. Hu Y, Fay AW, Ribbe MW (2007) Molecular insights into nitrogenase FeMo cofactor insertion: the role of His 362 of the MoFe protein alpha subunit in FeMo cofactor incorporation. J Biol Inorg Chem 12(4):449–460

    Article  CAS  PubMed  Google Scholar 

  79. Fay AW, Hu Y, Schmid B, Ribbe MW (2007) Molecular insights into nitrogenase FeMoco insertion–the role of His 274 and His 451 of MoFe protein alpha subunit. J Inorg Biochem 101(11–12):1630–1641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hu Y, Fay AW, Schmid B, Makar B, Ribbe MW (2006) Molecular insights into nitrogenase FeMoco insertion: TRP-444 of MoFe protein alpha-subunit locks FeMoco in its binding site. J Biol Chem 281(41):30534–30541

    Article  CAS  PubMed  Google Scholar 

  81. Thorneley RN, Lowe DJ (1984) The mechanism of Klebsiella pneumoniae nitrogenase action. Pre-steady-state kinetics of an enzyme-bound intermediate in N2 reduction and of NH3 formation. Biochem J 224(3):887–894

    Google Scholar 

  82. Hoffman BM, Lukoyanov D, Yang ZY, Dean DR, Seefeldt LC (2014) Mechanism of nitrogen fixation by nitrogenase: the next stage. Chem Rev 114(8):4041–4062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lowe DJ, Thorneley RN (1984) The mechanism of Klebsiella pneumoniae nitrogenase action. The determination of rate constants required for the simulation of the kinetics of N2 reduction and H2 evolution. Biochem J 224(3):895–901

    Google Scholar 

  84. Thorneley RN, Lowe DJ (1984) The mechanism of Klebsiella pneumoniae nitrogenase action. Simulation of the dependences of H2-evolution rate on component-protein concentration and ratio and sodium dithionite concentration. Biochem J 224(3):903–909

    Google Scholar 

  85. Lukoyanov D, Yang ZY, Khadka N, Dean DR, Seefeldt LC, Hoffman BM (2015) Identification of a key catalytic intermediate demonstrates that nitrogenase is activated by the reversible exchange of N2 for H2. J Am Chem Soc 137(10):3610–3615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lukoyanov D, Khadka N, Yang ZY, Dean DR, Seefeldt LC, Hoffman BM (2016a) Reversible photoinduced reductive elimination of H2 from the nitrogenase dihydride state, the E4(4H) Janus intermediate. J Am Chem Soc 138(4):1320–1327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lukoyanov D, Khadka N, Yang ZY, Dean DR, Seefeldt LC, Hoffman BM (2016b) Reductive elimination of H2 activates nitrogenase to reduce the N≡N triple Bond: characterization of the E4(4H) Janus intermediate in wild-type enzyme. J Am Chem Soc 138(33):10674–10683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Igarashi RY, Laryukhin M, Dos Santos PC et al (2005) Trapping H- bound to the nitrogenase FeMo-cofactor active site during H2 evolution: characterization by ENDOR spectroscopy. J Am Chem Soc 127(17):6231–6241

    Article  CAS  PubMed  Google Scholar 

  89. Lukoyanov D, Barney BM, Dean DR, Seefeldt LC, Hoffman BM (2007) Connecting nitrogenase intermediates with the kinetic scheme for N2 reduction by a relaxation protocol and identification of the N2 binding state. Proc Natl Acad Sci U S A 104(5):1451–1455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lukoyanov D, Yang ZY, Dean DR, Seefeldt LC, Hoffman BM (2010) Is Mo involved in hydride binding by the four-electron reduced (E4) intermediate of the nitrogenase MoFe protein? J Am Chem Soc 132(8):2526–2527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Raugei S, Seefeldt LC, Hoffman BM (2018) Critical computational analysis illuminates the reductive-elimination mechanism that activates nitrogenase for N2 reduction. Proc Natl Acad Sci U S A 115(45):E10521–E10530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hoeke V, Tociu L, Case DA, Seefeldt LC, Raugei S, Hoffman BM (2019) High-resolution ENDOR spectroscopy combined with quantum chemical calculations reveals the structure of nitrogenase Janus intermediate E4(4H). J Am Chem Soc 141(30):11984–11996

    Google Scholar 

  93. Yang H, Rittle J, Marts AR, Peters JC, Hoffman BM (2018) ENDOR characterization of (N2)FeII(μ-H)2FeI(N2)-: A spectroscopic model for N2 binding by the di-μ-hydrido nitrogenase Janus intermediate. Inorg Chem 57(19):12323–12330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Burgess BK, Wherland S, Newton WE, Stiefel EI (1981) Nitrogenase reactivity: insight into the nitrogen-fixing process through hydrogen-inhibition and HD-forming reactions. Biochemistry 20(18):5140–5146

    Article  CAS  PubMed  Google Scholar 

  95. Jensen BB, Burris RH (1985) Effect of high pN2 and high pD2 on NH3 production, H2 evolution, and HD formation by nitrogenases. Biochemistry 24(5):1141–1147

    Article  CAS  PubMed  Google Scholar 

  96. Fisher K, Dilworth MJ, Newton WE (2000) Differential effects on N2 binding and reduction, HD formation, and azide reduction with α-195His- and α-191Gln-substituted MoFe proteins of Azotobacter vinelandii nitrogenase. Biochemistry 39(50):15570–15577

    Article  CAS  PubMed  Google Scholar 

  97. Yang ZY, Khadka N, Lukoyanov D, Hoffman BM, Dean DR, Seefeldt LC (2013) On reversible H2 loss upon N2 binding to FeMo-cofactor of nitrogenase. Proc Natl Acad Sci U S A 110(41):16327–16332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Chatt J, Pearman AJ, Richards RL (1975) The reduction of mono-coordinated molecular nitrogen to ammonia in a protic environment. Nature 253:39–40

    Article  CAS  Google Scholar 

  99. Yandulov DV, Schrock RR (2003) Catalytic reduction of dinitrogen to ammonia at a single molybdenum center. Science 301(5629):76–78

    Article  CAS  PubMed  Google Scholar 

  100. Thorneley RNF, Eady RR, Lowe DJ (1978) Biological nitrogen fixation by way of an enzyme-bound dinitrogen-hydride intermediate. Nature 272:557–558

    Article  CAS  Google Scholar 

  101. Davis LC (1980) Hydrazine as a substrate and inhibitor of Azotobacter vinelandii nitrogenase. Arch Biochem Biophys 204(1):270–276

    Article  CAS  PubMed  Google Scholar 

  102. Barney BM, McClead J, Lukoyanov D et al (2007) Diazene (HN=NH) is a substrate for nitrogenase: insights into the pathway of N2 reduction. Biochemistry 46(23):6784–6794

    Article  CAS  PubMed  Google Scholar 

  103. Barney BM, Yang TC, Igarashi RY et al (2005) Intermediates trapped during nitrogenase reduction of N triple bond N, CH3-N=NH, and H2N–NH2. J Am Chem Soc 127(43):14960–14961

    Article  CAS  PubMed  Google Scholar 

  104. Lukoyanov D, Dikanov SA, Yang ZY et al (2011) ENDOR/HYSCORE studies of the common intermediate trapped during nitrogenase reduction of N2H2, CH3N2H, and N2H4 support an alternating reaction pathway for N2 reduction. J Am Chem Soc 133(30):11655–11664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lukoyanov D, Yang ZY, Barney BM, Dean DR, Seefeldt LC, Hoffman BM (2012) Unification of reaction pathway and kinetic scheme for N2 reduction catalyzed by nitrogenase. Proc Natl Acad Sci U S A 109(15):5583–5587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Spatzal T, Perez KA, Einsle O, Howard JB, Rees DC (2014) Ligand binding to the FeMo-cofactor: structures of CO-bound and reactivated nitrogenase. Science 345(6204):1620–1623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sippel D, Rohde M, Netzer J et al (2018) A bound reaction intermediate sheds light on the mechanism of nitrogenase. Science 359(6383):1484–1489

    Article  CAS  PubMed  Google Scholar 

  108. Benediktsson B, Thorhallsson AT, Bjornsson R (2018) QM/MM calculations reveal a bridging hydroxo group in a vanadium nitrogenase crystal structure. Chem Commun (Camb) 54(53):7310–7313

    Article  CAS  Google Scholar 

  109. Spatzal T, Perez KA, Howard JB, Rees DC (2015) Catalysis-dependent selenium incorporation and migration in the nitrogenase active site iron-molybdenum cofactor. Elife 4:e11620

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would also like to thank the funding agencies that support the work in our groups, including the NIH-NIGMS grant GM67626 (to M.W.R. and Y.H.), which funds research related to the assembly of nitrogenase; the Department of Energy grants DOE (BES) DE-SC0016510 (to Y.H. and M.W.R.) and DE-SC0014470 (to M.W.R. and Y.H.), which fund work related to the mechanistic investigation of ammonia and hydrocarbon formation, respectively, by nitrogenase and related variants; and the NSF grants CHE-1904131 (to M.W.R. and Y.H.) and CHE-1651398 (to Y.H.), which fund work related to CO and CO2 activation by nitrogenase and its Fe protein component, respectively.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chi-Chung Lee , Yilin Hu or Markus Walter Ribbe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lee, CC., Stiebritz, M.T., Hu, Y., Ribbe, M.W. (2021). Assembly and Function of Nitrogenase. In: Moura, J.J.G., Moura, I., Maia, L.B. (eds) Enzymes for Solving Humankind's Problems. Springer, Cham. https://doi.org/10.1007/978-3-030-58315-6_6

Download citation

Publish with us

Policies and ethics