Skip to main content

Nitrogen Footprints and the Role of Soil Enzymes

  • Chapter
  • First Online:
Enzymes for Solving Humankind's Problems

Abstract

In a climate change scenario soil microbial population is affected by the impacts on soil biotic and abiotic factors, with a strong influence on soil microorganisms affecting enzyme production and activity. This influences soil organic matter turnover and nutrient cycling in soil. Nitrogen is one of the most, if not the most important, nutrient for all living organisms. Besides its vital role in maintenance of life on Earth and need to maintain nitrogen availability to produce enough food for the world population, nitrogen losses into the environment cause negative effects in all environmental compartments. To quantify the impact of each individual contribution to nitrogen pollution a concept of nitrogen-footprint was created, to measure nitrogen lost as a result of food and energy consumption. Enzymes play a role in the response of soils to nitrogen pollution and the mitigation and adaptation to climate change effects on nitrogen-footprint. Enzymes are affected by abiotic factors alterations driven by climate change but may alter their activity as a result of human actions, e.g. agricultural management practices affecting microbial populations. Enzymes may thus be a vehicle of both increase and reduction of nitrogen availability and therefore impact on nitrogen-footprint in a positive or negative way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu L, Zhang X, Xu W, Liu X et al (2020) (2020) Challenges for global sustainable nitrogen management in agricultural systems. J Agric Food Chem 68(11):3354–3361. https://doi.org/10.1021/acs.jafc.0c00273

    Article  CAS  PubMed  Google Scholar 

  2. Westhoek H, Lesschen JP, Leip A et al (2015) Nitrogen on the table: the influence of food choices on nitrogen emissions and the European environment. (European Nitrogen Assessment Special Report on Nitrogen and Food.) Centre for Ecology & Hydrology, Edinburgh, UK

    Google Scholar 

  3. Leach AM, Galloway JN, Bleeker A, Erisman JW et al (2012) A nitrogen footprint model to help consumers understand their role in nitrogen losses to the environment. Environ Develop 1(1):40–66. https://doi.org/10.1016/j.envdev.2011.12.005

    Article  Google Scholar 

  4. Leip et al (2011) Integrating nitrogen fluxes at the European scale.In: Sutton et al (eds) European nitrogen assessment 612 p. Cambridge University Press, Cambridge, pp 345–378

    Google Scholar 

  5. Liang X, Lam SK, Gu B, Galloway J et al (2018) Reactive nitrogen spatial intensity (NrSI): a new indicator for environmental sustainability. Global Environ Change 52:101–107. https://doi.org/10.1016/j.gloenvcha.2018.06.001

    Article  Google Scholar 

  6. Erisman J, Sutton M, Galloway J et al (2008) How a century of ammonia synthesis changed the world. Nature Geosci 1:636–639. https://doi.org/10.1038/ngeo325

    Article  CAS  Google Scholar 

  7. Angers DA, Eriksen-Hamel NS (2008) Full-inversion tillage and organic carbon distribution in soil profiles: a meta-analysis. Soil Sci Soc Am J 72:1370–1374. https://doi.org/10.2136/sssaj2007.0342

    Article  CAS  Google Scholar 

  8. Cordovil CMdS, Bittman S, Brito LM, Goss MJ et al (2020) Climate-resilient and smart agricultural management tools to cope with climate change-induced soil quality decline. Chapter 22. In: Prasad MNV, Pietrzykowski M (eds) Climate change and soil interactions. 840 p, pp 613–641. Elsevier ISBN: 978-0-12-818032-7

    Google Scholar 

  9. Dotaniya ML, Menna VD (2013) Rhizosphere effect on nutrient availability in soil and its uptake by plants -a review. Proc Natl Acad Sci India Sec B Biol Sci 85(1):1–12. https://doi.org/10.1007/s40011-013-0297-0

  10. Błońska E, Lasota J, Zwydak M (2017) The relationship between soil properties, enzyme activity and land use. For Res Pap 78:39–44. https://doi.org/10.1515/frp-2017-0004

    Article  Google Scholar 

  11. Dick R, Kandeler E (eds) (2005) Enzymes in soil. Encyclopedia of soils in the environment. Elsevier, Oxford, pp 448–456

    Google Scholar 

  12. Dotaniya ML, Aparna K, Dotaniya CK, Singh Mahendra et al (2019) Role of soil enzymes in sustainable crop production. In Kuddus M (ed) Enzymes in food biotechnology—production, applications and future prospects. Academic Press, Elsevier. https://doi.org/10.1016/B978-0-12-813280-7.09989-8

    Google Scholar 

  13. Taylor RAJ (2019) Chapter 11—Other biological examples. In Taylor RAJ (ed) Taylor’s power law—order and pattern in nature. Academic Press, Cambridge

    Google Scholar 

  14. Stirling G, Hayden H, Pattison T, Stirling M (2017) Soil health, soil biology, soil borne diseases and sustainable agriculture: a guide. Aust Plant Pathol 46(4):387. https://doi.org/10.1007/s13313-017-0493-0

    Article  Google Scholar 

  15. Gu Y, Wang P, Kong C (2009) Urease, invertase, dehydrogenase and polyphenol activities in paddy soils influenced by allelophatic rice variety. Euro J Soil 45:411–436. https://doi.org/10.1016/j.ejsobi.2009.06.003

    Article  CAS  Google Scholar 

  16. Burns RG (1982) Enzyme activity in soil: location and possible role in microbial ecology. Soil Biol Biochem 14:423–427. https://doi.org/10.1016/0038-0717(82)90099-2

    Article  CAS  Google Scholar 

  17. Burns RG (1986) Interaction of enzymes with soil mineral and organic colloids. In: Huang PM, Schnitzer M (eds) Interactions of soil minerals with natural organics and microbes. Soil Sci Soc Am, Madison, pp 429–452

    Google Scholar 

  18. Ladd JN, Jackson RB (1982) Biochemistry of ammonification. In: Stevenson (ed) Nitrogen in agricultural soils. Am Soc Agron 2:173–228. Agronomy Monographs. https://doi.org/10.2134/agronmonogr22

  19. Steinweg JM, Dukes JS, Paul EA, Wallenstein MD (2013) Microbial responses to multi actor climate change: effects on soil enzymes. Front Microbiol 4:146. https://doi.org/10.3389/fmicb.2013.00146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Piotrowska A, Koper J (2010) Soil β-glucosidase activity under winter wheat cultivated in crop rotation systems depleting and enriching the soil in organic matter. J Elementol 15(3):593–600

    Google Scholar 

  21. Wallenstein MD, Weintraub MN (2008) Emerging tools for measuring and modelling the in situ activity of soil extracellular enzymes. Biochem 40(9):2098–2106. https://doi.org/10.1016/j.soilbio.2008.01.024

    Article  CAS  Google Scholar 

  22. Tabatai MA (1994) Soil enzymes. In: Weaver RW, Agnelr JS, Bottomley PS (eds) Methods of soil analysis—part 2 microbiological and biochemical properties. Soil Science Society of America, WI, pp 775–833. SSSA Book Series No. 5

    Google Scholar 

  23. Acosta-Martinez V, Cruz L, Sotomayor-Ramirez D, Perez-Alegria L (2007) Enzyme activities as affected by soil properties and land use in a tropical watershed. App Soil Eco 35(1):35–45. https://doi.org/10.1016/j.apsoil.2006.05.012

    Article  Google Scholar 

  24. Ghezzehei TA, Sulman B, Arnold CL, Bogie NA, Berhe AA (2019) On the role of soil water retention characteristic on aerobic microbial respiration. Biogeosci 16(6):1187–1209. https://doi.org/10.5194/bg-16-1187-2019

    Article  CAS  Google Scholar 

  25. Burns RG, DeForest JL, Marxsen J, Sinsabaugh RL et al (2013) Soil enzymes in a changing environment: current knowledge and future directions. Soil Biol Biochem 58:216–234. https://doi.org/10.1016/j.soilbio.2012.11.009

    Article  CAS  Google Scholar 

  26. Alvey S, Yang CH, Buerkert A, Crowley DE (2003) Cereal/legume rotation effects on rhizosphere bacterial community structure in West African soils. Biol Fertil Soils 37:73–82. https://doi.org/10.1007/s00374-002-0573-2

    Article  Google Scholar 

  27. Habig J, Swanepoel C (2015) Effects of conservation agriculture and fertilization on soil microbial diversity and activity. Environments 2:358–384. https://doi.org/10.3390/environments2030358

    Article  Google Scholar 

  28. Zuber SM, Villamil MB (2016) Meta-analysis approach to assess effect of tillage on microbial biomass and enzyme activities. Soil Biol Biochem 97:176–187. https://doi.org/10.1016/j.soilbio.2016.03.011

    Article  CAS  Google Scholar 

  29. Tan X, Chang SX, Kabzems R (2008) Soil compaction and forest floor removal reduced microbial biomass and enzyme activities in a boreal aspen forest soil. Biol Fertil Soils 44:471–479. https://doi.org/10.1007/s00374-007-0229-3

    Article  Google Scholar 

  30. Govaerts B, Mezzalama M, Unno Y et al (2007) Influence of tillage, residue management, and crop rotation on soil microbial biomass and catabolic diversity. Appl Soil Ecol 37:18–30. https://doi.org/10.1016/j.apsoil.2007.03.006

    Article  Google Scholar 

  31. Namli A, Baran A (2000) The effect of compaction on urease enzyme activity, carbon dioxide evaluation and nitrogen mineralisation. Turkish J Agri 24(4):437–443

    Google Scholar 

  32. Curci M, Pizzigallo MDR, Crecchio C et al (1997) Effects of conventional tillage on biochemical properties of soils. Biol Fertil Soils 25:1–6. https://doi.org/10.1007/s003740050271

    Article  CAS  Google Scholar 

  33. Makoi JHR, Ndakidemi PA (2008) Selected soil enzymes: examples of their potential roles in the ecosystem. Afr J Biotechn. 7(3):181–191

    CAS  Google Scholar 

  34. Riah W, Laval K, Laroche-Aizenberg E, Mougin C et al (2014) Effects of pesticides on soil enzymes: a review. Environ Chem Lett 12:257–273. https://doi.org/10.1007/s10311-014-0458-2

    Article  CAS  Google Scholar 

  35. Utobo EB, Tewari L (2014) Soil enzymes as bioindicators of soil ecosystem status. Appl Ecol Environ Res 13:147–169. https://doi.org/10.15666/aeer/1301_147169

  36. Pandey D, Agrawal M, Bohra JS (2015) Assessment of soil quality under different tillage practices during wheat cultivation: soil enzymes and microbial biomass. Chem Ecol 31:510–523. https://doi.org/10.1080/02757540.2015.1029462

    Article  CAS  Google Scholar 

  37. Saviozzi A, Levi-Minzi R, Cardelli R, Riffaldi R (2001) A comparison of soil quality in adjacent cultivated, forest and native grassland soils. Plant Soil 233:251–259. https://doi.org/10.1023/A:1010526209076

    Article  CAS  Google Scholar 

  38. Yang ZX, Liu SQ, Zheng DW, Feng SD (2006) Effects of cadium, zinc and lead on soil enzyme activities. J Environ Sci (China) 18:1135–1141. https://doi.org/10.1016/S1001-0742(06)60051-X

    Article  Google Scholar 

  39. Brzezinska M, Stepniewska Z, Stepnewski W (2001) Dehydrogenase and catalase activity of soil irrigated with municipal wastewater. Pol J Environ Stud 10:307–3011

    CAS  Google Scholar 

  40. Gajda A, Martyniuk S (2005) Microbial biomass C and N and activity of enzymes in soil under winter wheat grown in different crop management systems. Pol J Environ Stud 14(2):159–163

    CAS  Google Scholar 

  41. Mazzoncini M, Sapkota TB, Bàrberi P et al (2011) Long-term effect of tillage, nitrogen fertilization and cover crops on soil organic carbon and total nitrogen content. Soil Tillage Res 114:165–174. https://doi.org/10.1016/j.still.2011.05.001

    Article  Google Scholar 

  42. Tiemann LK, Grandy AS, Atkinson EE et al (2015) Crop rotational diversity enhances belowground communities and functions in an agroecosystem. Ecol Lett 18:761–771. https://doi.org/10.1111/ele.12453

    Article  CAS  PubMed  Google Scholar 

  43. Mitchel DC, Castellano MJ, Sawyer JE, Pantoja J (2013) Cover crop effects on nitrous oxide emissions: role of mineralizable carbon. Soil Sci Soc Am J 77:1765. https://doi.org/10.2136/sssaj2013.02.0074

    Article  CAS  Google Scholar 

  44. Chavarría DN, Verdenelli RA, Serri DL et al (2016) Effect of cover crops on microbial community structure and related enzyme activities and macronutrient availability. Eur J Soil Biol 76:74–82. https://doi.org/10.1016/j.ejsobi.2016.07.002

    Article  CAS  Google Scholar 

  45. Kaschuk G, Alberton O, Hungria M (2010) Three decades of soil microbial biomass studies in Brazilian ecosystems: lessons learned about soil quality and indicators for improving sustainability. Soil Biol Biochem 42:1–3. https://doi.org/10.1016/j.soilbio.2009.08.020

    Article  CAS  Google Scholar 

  46. Sardans J, Peñuelas J (2005) Drought decreases soil enzyme activity in a Mediterranean Quercus ilex L. forest. Soil Biol Biochem 37:455–461. https://doi.org/10.1016/j.soilbio.2004.08.004

    Article  CAS  Google Scholar 

  47. Maharjan M, Sanaullah M, Razavi BS, Kuzyakov Y (2017) Effect of land use and management practices on microbial biomass and enzyme activities in subtropical top- and sub-soils. Appl Soil Ecol 113:22–28. https://doi.org/10.1016/j.apsoil.2017.01.008

    Article  Google Scholar 

  48. Zhang Q, Zhou W, Liang GQ, Wang XB et al (2015) Effects of different organic manures on the biochemical and microbial characteristics of albic paddy soil in a short-term experiment. PLoS ONE 10:e0124096. https://doi.org/10.1371/journal.pone.0124096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ayuni N, Radziah O, Naher UAA et al (2015) Effect of nitrogen on nitrogenase activity of diazotrophs and total bacterial population in rice soil. J Anim Plant Sci 25:1358–1364

    CAS  Google Scholar 

  50. Coelho MRR, Marriel IE, Jenkins SN et al (2009) Molecular detection and quantification of nifH gene sequences in the rhizosphere of sorghum (Sorghum bicolor) sown with two levels of nitrogen fertilizer. Appl Soil Ecol 42:48–53. https://doi.org/10.1016/j.apsoil.2009.01.010

    Article  Google Scholar 

  51. Davison J (1988) Plant beneficial bacteria. Nat Biotechnol 6:282–286. https://doi.org/10.1038/nbt0388-282

    Article  CAS  Google Scholar 

  52. Kloepper JW, Lifshitz R, Zablotowicz RM (1989) Free-living bacteria inocula for enhancing crop productivity. Trends Biotechnol 7:39–43. https://doi.org/10.1016/0167-7799(89)90057-7

    Article  Google Scholar 

  53. Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. CRC Crit Rev Plant Sci 22:107–149. https://doi.org/10.1080/713610853

    Article  CAS  Google Scholar 

  54. Allison SD, Weintraub MN, Gartner TB, Waldrop MP (2010) Evolutionary-economic principles as regulators of soil enzyme production and ecosystem function. In: Shukla G, Varma A (eds) Soil enzimology. Soil Biol 22: Springer, Berlin. https://doi.org/10.1007/978-3-642-14225-3_12

  55. Gianfreda L (2015) Enzymes of importance to rhizosphere processes. J Soil Sci Plant Nutr 15:283–306. https://doi.org/10.4067/s0718-9516201500500002

    Article  CAS  Google Scholar 

  56. Cheeke TE, Phillips RP, Brzostek ER, Rosling A et al (2017) Dominant mycorrhizal association of trees alters carbon and nutrient cycle by selecting for microbial groups with distinct enzyme function. New Phylo 214:432–442. https://doi.org/10.1111/nph.14343

    Article  CAS  Google Scholar 

  57. Chen R, Senbayram M, Blagodatsky S, Myachina O et al (2014) Effects of 11 years of conservation tillage on soil organic matter fractions in wheat monoculture in Loess Plateau of China. Soil Tillage Res 106:85–94. https://doi.org/10.1016/j.still.2009.09.009

    Article  Google Scholar 

  58. Doran JW (1980) Soil microbial and biochemical changes associated with reduced tillage. Soil Sci Soc Am J 44:765–771. https://doi.org/10.2136/sssaj1980.03615995004400040022x

    Article  CAS  Google Scholar 

  59. Fontaine S, Mariotti A, Abbadie L (2003) The priming effect of organic matter: a question of microbial competition? Soil Biol Biochem 35:837–843. https://doi.org/10.1016/S0038-0717(03)00123-8

    Article  CAS  Google Scholar 

  60. Fang S, Xie B, Zhang H (2007) Nitrogen dynamics and mineralization in degraded agricultural soil mulched with fresh grass. Plant Soil 300:269–280. https://doi.org/10.1007/s11104-007-9414-2

    Article  CAS  Google Scholar 

  61. Fang S, Liu J, Liu D (2010) Enzymatic activity and nutrient availability in the rhizosphere of poplar plantations treated with fresh grass mulch. Soil Sci Plant Nutr 56(3):483–491. https://doi.org/10.1111/j.1747-0765.2010.00480.x

    Article  CAS  Google Scholar 

  62. Gobran GR, Clegg S, Courchesne F (1998) Rhizospheric processes influencing the biogeochemistry of forest ecosystems. Biogeochem 42:107–120. https://doi.org/10.1023/A:1005967203053

    Article  Google Scholar 

  63. Chen J, Luo Y, van Groenigen KJ, Hungate BA et al (2018) A keystone microbial enzyme for nitrogen control of soil carbon storage. Sci Adv 4(8): eaaq1689. https://doi.org/10.1126/sciadv.aaq1689

  64. Chen Y, Chen J, Luo Y (2019) Data-driven ENZYme (DENZY) model represents soil organic carbon dynamics in forests impacted by nitrogen deposition. Soil Biol Biochem 138:107575. https://doi.org/10.1016/j.soilbio.2019.107575

    Article  CAS  Google Scholar 

  65. Acosta-Martínez V, Reicher Z, Bischoff M, Turco RF (1999) The role of tree leaf mulch and nitrogen fertilizer on turfgrass soil quality. In Wang X, Fan J, Xing Y, Xu G et al (2018) The effects of mulch and nitrogen fertilizer on the soil environment of crop plants. Adv Agron 153:121–173. https://doi.org/10.1016/bs.agron.2018.08.003

    Google Scholar 

  66. Qian X, Gu J, Pan H, Zhang K et al (2015) Effects of living mulches on the soil nutrient contents, enzyme activities, and bacterial community diversities of apple orchard soils. In: Wang X, Fan J, Xing Y, Xu G et al (eds) The effects of mulch and nitrogen fertilizer on the soil environment of crop plants. Adv Agron 153:121–173. https://doi.org/10.1016/bs.agron.2018.08.003

  67. Jin K, Sleutel S, Buchan D, De Neve S et al (2009) Changes of soil enzyme activities under different tillage practices in the Chinese Loess Plateau. Soil Tillage Res 104:115–120. https://doi.org/10.1016/j.still.2009.02.004

    Article  Google Scholar 

  68. Tao J, Griffiths B, Zhang S, Chen X et al (2009) Effects of earthworms on soil enzyme activity in an organic residue amended rice-wheat rotation agroecosystem. Appl Soil Ecol 42:221–226. https://doi.org/10.1016/j.apsoil.2009.04.003

    Article  Google Scholar 

  69. Acosta-Martínez V, Tabatabai M (2001) Tillage and residue management effects on arylamidase activity in soils. In: In Wang X, Fan J, Xing Y, Xu G et al (eds) The effects of mulch and nitrogen fertilizer on the soil environment of crop plants. Adv Agron, vol 153, pp. 121–173. https://doi.org/10.1016/bs.agron.2018.08.003

  70. Siczek A, Frac M (2012) Soil microbial activity as influenced by compaction and straw mulching. Int Agrophys 26:65–69. https://doi.org/10.2478/v10247-012-0010-1

    Article  Google Scholar 

  71. Jung KY, Kitchen NR, Sudduth KA, Lee KS et al (2010) Soil compaction varies by crop management system over a claypan soil landscape. Soil Till Res 107(1):1–10. https://doi.org/10.1016/j.still.2009.12.007

    Article  Google Scholar 

  72. Elfstrand S, Båth B, Mårtensson A (2007) Influence of various forms of green manure amendment on soil microbial community composition, enzyme activity and nutrient levels in leek. Appl Soil Ecol 36(1):70–82. https://doi.org/10.1016/j.apsoil.2006.11.001

    Article  Google Scholar 

  73. Tejada M, Moreno JL, Hernández MT, García C (2008) Soil amendments with organic wastes reduce the toxicity of nickel to soil enzyme activities. Eur J Soil Biol 44:129–140. https://doi.org/10.1016/j.ejsobi.2007.10.007

    Article  CAS  Google Scholar 

  74. Ge G, Li Z, Fan F, Chu G, Hou Z et al (2009) Soil biological activity and their seasonal variations in response to long-term application of organic and inorganic fertilizers. Plant Soil 326:31–44. https://doi.org/10.1007/s11104-009-0186-8

    Article  CAS  Google Scholar 

  75. Ge GF, Li ZF, Zhang J, Wang LG et al (2009) Geographical and climatic differences in long-term effect of organic and inorganic amendments on soil enzymatic activities and respiration in field experimental stations of China. Ecol Complex 6:421–431. https://doi.org/10.1016/j.ecocom.2009.02.001

    Article  Google Scholar 

  76. Moro H, Kunito T, Sato T (2015) Assessment of phosphorus bioavailability in cultivated Andisoils from a long-term fertilization field experiment using chemical extractions and soil enzyme activities. Arch Agron Soil Sci 61(8):1107–1123. https://doi.org/10.1080/03650340.2014.984697

    Article  CAS  Google Scholar 

  77. Allison SD, Vitousek PM (2005) Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biol Biochem 37:937–944. https://doi.org/10.1016/j.soilbio.2004.09.014

    Article  CAS  Google Scholar 

  78. Stone MM, Weiss MS, Goodale CL, Adams MB et al (2012) Temperature sensitivity of soil enzyme kinetics under N-fertilization in two temperate forests. Global Change Biol 18:1173–1184. https://doi.org/10.1111/j.1365-2486.2011.02545.x

    Article  Google Scholar 

  79. Finzi AC, Moore DJP, Delucia EH, Lichter J et al (2006) Progressive nitrogen limitation of ecosystem processes under elevated CO2 in a warm-temperate forest. Ecol 87(1):15–25. https://doi.org/10.1890/04-1748

    Article  Google Scholar 

  80. Schulze J (2004) How are nitrogen fixation rates regulated in legumes? Jour Plant Nutr Soil Sci 167(2):125–137. https://doi.org/10.1002/jpln.200320358

    Article  CAS  Google Scholar 

  81. Thomas RB, Skip J, Bloem V, Schlesinger WH (2006) Climate change and symbiotic nitrogen fixation in agroecosystems. Environ Sci 4: https://doi.org/10.1201/9781420003826.ch4

    Google Scholar 

  82. Chen J, Elsgaard L, van Groeningen J, Olesen JE et al (2020) Soil carbon loss with warming: new evidence from carbon-degrading enzymes. Glob Change Biol 26:1944–1952. https://doi.org/10.1111/gcb.14986

    Article  Google Scholar 

  83. Nie M, Pendall E, Bell C, Wallenstein MD (2014) Soil aggregate size distribution mediates microbial climate change feedbacks. Soil Biol Biogeochem 68:357–365. https://doi.org/10.1016/j.soilbio.2013.10.012

    Article  CAS  Google Scholar 

  84. Schutter ME, Dick RP (2002) Microbial community profiles and activities among aggregates of winter fallow and cover-cropped soil. Soil Sci Soc a J 66:142–153. https://doi.org/10.2136/sssaj2002.1420

    Article  CAS  Google Scholar 

  85. Gong S, Zhang T, Guo R, Cao H et al (2015) Response of soil enzyme activity to warming and nitrogen addition in a meadow steppe. Soil Res 53:242–252. https://doi.org/10.1071/SR14140

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia M. d. S. Cordovil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cordovil, C.M.d.S. et al. (2021). Nitrogen Footprints and the Role of Soil Enzymes. In: Moura, J.J.G., Moura, I., Maia, L.B. (eds) Enzymes for Solving Humankind's Problems. Springer, Cham. https://doi.org/10.1007/978-3-030-58315-6_5

Download citation

Publish with us

Policies and ethics